@article{KarleSchueleKlebeetal.2013, author = {Karle, Kathrin N. and Sch{\"u}le, Rebecca and Klebe, Stephan and Otto, Susanne and Frischholz, Christian and Liepelt-Scarfone, Inga and Sch{\"o}ls, Ludger}, title = {Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP)}, series = {Orphanet Journal of Rare Diseases}, volume = {8}, journal = {Orphanet Journal of Rare Diseases}, number = {158}, issn = {1750-1172}, doi = {10.1186/1750-1172-8-158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124763}, year = {2013}, abstract = {Background: Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP. Methods: We clinically and electrophysiologically examined a cohort of 128 patients with genetically confirmed or clinically probable HSP. Motor evoked potentials (MEPs) to arms and legs, somato-sensory evoked potentials of median and tibial nerves, and nerve conduction studies of tibial, ulnar, sural, and radial nerves were assessed. Results: Whereas all patients showed clinical signs of spastic paraparesis, MEPs were normal in 27\% of patients and revealed a broad spectrum with axonal or demyelinating features in the others. This heterogeneity can at least in part be explained by different underlying genotypes, hinting for distinct pathomechanisms in HSP subtypes. In the largest subgroup, SPG4, an axonal type of damage was evident. Comprehensive electrophysiological testing disclosed a more widespread affection of long fibre tracts involving peripheral nerves and the sensory system in 40\%, respectively. Electrophysiological abnormalities correlated with the severity of clinical symptoms. Conclusions: Whereas HSP is primarily considered as an upper motoneuron disorder, our data suggest a more widespread affection of motor and sensory tracts in the central and peripheral nervous system as a common finding in HSP. The distribution patterns of electrophysiological abnormalities were associated with distinct HSP genotypes and could reflect different underlying pathomechanisms. Electrophysiological measures are independent of symptomatic treatment and may therefore serve as a reliable biomarker in upcoming HSP trials.}, language = {en} } @phdthesis{Riedel2013, author = {Riedel, Simone Stefanie}, title = {Characterization of the fluorescence protein FP635 for in vivo imaging and establishment of a murine multiple myeloma model for non-invasive imaging of disease progression and response to therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77894}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Optical in vivo imaging methods have advanced the fields of stem cell transplantation, graft-versus-host disease and graft-versus-tumor responses. Two well known optical methods, based on the transmission of light through the test animal are bioluminescence imaging (BLI) and fluorescence imaging (FLI). Both methods allow whole body in vivo imaging of the same animal over an extended time span where the cell distribution and proliferation can be visualized. BLI has the advantages of producing almost no unspecific background signals and no necessity for external excitation light. Hence, BLI is a highly sensitive and reliable detection method. Yet, the BLI reporter luciferase is not applicable with common microscopy techniques, therefore abolishing this method for cellular resolution imaging. FLI in turn, presents the appealing possibility to use one fluorescent reporter for whole body imaging as well as cellular resolution applying microscopy techniques. The absorption of light occurs mainly due to melanin and hemoglobin in wavelengths up to 650 nm. Therefore, the wavelength range beyond 650 nm may allow sensitive optical imaging even in deep tissues. For this reason, significant efforts are undertaken to isolate or develop genetically enhanced fluorescent proteins (FP) in this spectral range. "Katushka" also called FP635 has an emission close to this favorable spectrum and is reported as one of the brightest far-red FPs. Our experiments also clearly showed the superiority of BLI for whole body imaging over FLI. Based on these results we applied the superior BLI technique for the establishment of a pre-clinical multiple myeloma (MM) mouse model. MM is a B-cell disease, where malignant plasma cells clonally expand in the bone marrow (BM) of older people, causing significant morbidity and mortality. Chromosomal abnormalities, considered a hallmark of MM, are present in nearly all patients and may accumulate or change during disease progression. The diagnosis of MM is based on clinical symptoms, including the CRAB criteria: increased serum calcium levels, renal insufficiency, anemia, and bone lesions (osteolytic lesions or osteoporosis with compression fractures). Other clinical symptoms include hyperviscosity, amyloidosis, and recurrent bacterial infections. Additionally, patients commonly exhibit more than 30\% clonal BM plasma cells and the presence of monoclonal protein is detected in serum and/or urine. With current standard therapies, MM remains incurable and patients diagnosed with MM between 2001 and 2007 had a 5-year relative survival rate of only 41\%. Therefore, the development of new drugs or immune cell-based therapies is desirable and necessary. To this end we developed the MOPC-315 cell line based syngeneic MM mouse model. MOPC-315 cells were labeled with luciferase for in vivo detection by BLI. We validated the non-invasively obtained BLI data with histopathology, measurement of idiotype IgA serum levels and flow cytometry. All methods affirmed the reliability of the in vivo BLI data for this model. We found that this orthotopic MM model reflects several key features of the human disease. MOPC-315 cells homed efficiently to the BM compartment including subsequent proliferation. Additionally, cells disseminated to distant skeletal parts, leading to the typical multifocal MM growth. Osteolytic lesions and bone remodeling was also detected. We found evidence that the cell line had retained plasticity seen by dynamic receptor expression regulation in different compartments such as the BM and the spleen.}, subject = {Fluoreszenzproteine}, language = {en} }