@article{Hovestadt1990, author = {Hovestadt, Thomas}, title = {M{\"o}glichkeiten und Kriterien f{\"u}r die Bestimmung von Minimalarealen von Tierpopulationen und {\"O}kosystembest{\"a}nden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30150}, year = {1990}, abstract = {No abstract available}, language = {de} } @article{Hovestadt1990, author = {Hovestadt, Thomas}, title = {Die Bedeutung zuf{\"a}lligen Aussterbens f{\"u}r die Naturschutzplanung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30136}, year = {1990}, abstract = {No abstract available}, language = {de} } @book{HovestadtRoeserMuehlenberg1991, author = {Hovestadt, Thomas and Roeser, J. and M{\"u}hlenberg, M.}, title = {Fl{\"a}chenbedarf von Tierpopulationen - als Kriterien f{\"u}r Maßnahmen des Biotopschutzes und als Datenbasis zur Beurteilung von Eingriffen in Natur und Landschaft}, isbn = {3-89336-057-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33645}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1991}, abstract = {Die Untersuchung des Fl{\"a}chenanspruchs von Tierpopulationen ist wegen folgender Gesichtspunkte wichtig: (a) Nachdem das Aussterben der Arten nicht nachl{\"a}ßt, erhebt sich die Frage nach den M{\"o}glichkeiten im Naturschutz, quantitative Forderungen zu begr{\"u}nden. (b) Da selbst gezielte Schutzmaßnahmen sinnlos werden, wenn die Voraussetzungen f{\"u}r das {\"u}berleben der Arten oder Lebensgemeinschaften nicht gegeben sind, muß man sich fragen, wieviel an Umweltverschmutzung reduziert werden muß, damit der Artenschutz verwirklicht werden kann. Der "Extensivierungsspielraum" an sich reicht nicht aus. Die Frage nach dem Fl{\"a}chenanspruch schließt den Gedanken einer "mindestens notwendigen" Fl{\"a}chensicherung ein. Der Fl{\"a}chenbedarf einer Tierpopulation wird bestimmt durch (A) den Raumbedarf der Reproduktionseinheit, und (B) der Gr{\"o}ße einer {\"u}berlebensf{\"a}higen Population. (A) variiert durch die individuell und im Jahresverlauf schwankenden Aktionsraumgr{\"o}ßen und die unterschiedliche Habitatqualit{\"a}t. Die {\"u}berlebensf{\"a}higkeit (B) einer Population ist von Zufallsprozessen abh{\"a}ngig und daher nur mit einer gewissen Wahrscheinlichkeit absch{\"a}tzbar. Vier verschiedene (nicht anthropogene) Faktoren k{\"o}nnen selbst in einem geeigneten Habi tat zum Aussterben von Populationen f{\"u}hren: (a) demographische und (b) genetische Zufallsprozesse, (c) Umweltschwankungen und (d) (Natur) katastrophen. Eine Absicherung gegen diese Risikofaktoren wird durch Vergr{\"o}ßerung der Population, Erh{\"o}hung der Zahl geeigneter Habitate und Verringerung der Isolierung zwischen den bewohnten Fl{\"a}chen erreicht. Eine Mindestforderung (Minimalareal die mindest notwendige Fl{\"a}che, die gesch{\"u}tzt werden muß) kann nur an der sog. "minimum viable population" bemessen werden. Die Gef{\"a}hrdungsgradanalyse ("population vulnerability analysis") f{\"u}r eine bestimmte Tierart liefert die notwendigen Angaben zur Habitatqualit{\"a}t, Fl{\"a}chengr{\"o}ße und Lage der Fl{\"a}chen, die f{\"u}r die Zukunftssicherung einer Population unter nat{\"u}rlichen Bedingungen (z.B. "mit 95\%iger Wahrscheinlichkeit die n{\"a}chsten 50 Jahre {\"u}berlebensf{\"a}hig" ) notwendig sind. Sowohl beim konstruktiven Artenschutz wie auch f{\"u}r die Schadensbegrenzung bei Eingriffsregelungen sollte eine Zielart ausgew{\"a}hlt werden, damit die Fl{\"a}chensicherung eindeutig quantitativ begr{\"u}ndet werden kann. Die Auswahl einer Zielart erfolgt nach Kriterien wie {\"u}berregionaler Gef{\"a}hrdungsgrad, Schl{\"u}sselart, Chancen der Populationssicherung und wird regional nach den bestehenden Voraussetzungen (Vorkommen, Habitatangebot, Regionalplan) angepaßt. Die wesentlichen Aspekte eines ZielartenKonzeptes sind: Der Fl{\"a}chenbedarf f{\"u}r Schutz- und Ausgleichsmaßnahmen wird an den {\"U}berlebensaussichten einzelner Tierpopulationen bemessen -- Die Zukunftssicherung muß nat{\"u}rliche Bedingungen (nicht st{\"a}ndige St{\"u}tzmaßnahmen) voraussetzen -- Die Analyse von Risikofaktoren bildet die Grundlage f{\"u}r die Absch{\"a}tzung der Zukunftsaussichten. Es sind wissenschaftlich begr{\"u}ndete, quantitative Aussagen m{\"o}glich. Durch die Sicherung von Fl{\"a}chen mit geeigneter Habitatqualit{\"a}t profitieren viele weitere Arten von den Schutzmaßnahmen. Es entsteht ein k{\"u}nftiger Forschungsbedarf vor allem zu den Gef{\"a}hrdungsgradanalysen ausgew{\"a}hlter Zielarten. F{\"u}r die praktische Umsetzung sind die Aufstellung einer regional angepaßten Zielartenliste, Habitateignungsanalysen und die Entwicklung von Populationsmodellen f{\"u}r Zielarten von seiten der biologischen Wissenschaft n{\"o}tig.}, subject = {Tiere}, language = {de} } @article{MuehlenbergHovestadt1992, author = {M{\"u}hlenberg, Michael and Hovestadt, Thomas}, title = {Das Zielartenkonzept}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30140}, year = {1992}, abstract = {No abstract available}, language = {de} } @article{HovestadtPoethkeMessner2000, author = {Hovestadt, Thomas and Poethke, Hans J. and Messner, Stefan}, title = {Variability in dispersal distances generates typical successional patterns: a simple simulation model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48178}, year = {2000}, abstract = {More recently, it became clear that conclusions drawn from traditional ecological theory may be altered substantially if the spatial dimension of species interactions is considered explicitly. Regardless of the details of these models, spatially explicit simulations of ecological processes have nearly universally shown that spatial or spatio-temporal patterns in species distributions can emerge even from homogeneous starting conditions; limited dispersal is one of the key factors responsible for the development of such aggregated and patchy distributions (cf., Pacala 1986, Holmes et al. 1994, Molofsky 1994, Tilman 1994, Bascompte and Sole 1995, 1997, 1998, Jeltsch et al. 1999). In line with these ideas, we wish to draw attention to the fact that in heterogeneous landscapes differences in characteristic dispersal distances between species are a sufficient precondition for the emergence of a successional pattern. We will use a simple, spatially explicit simulation program to demonstrate the validity of this statement. We will also show that the speed of the successional progress depends on scale and heterogeneity in the distribution of suitable habitat.}, language = {en} } @article{PoethkeHovestadt2002, author = {Poethke, Hans J. and Hovestadt, Thomas}, title = {Evolution of density-and patch-size-dependent dispersal rates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49659}, year = {2002}, abstract = {Based on a marginal value approach, we derive a nonlinear expression for evolutionarily stable (ES) dispersal rates in a metapopulation with global dispersal. For the general case of density-dependent population growth, our analysis shows that individual dispersal rates should decrease with patch capacity and-beyond a certain threshold-increase with population density. We performed a number of spatially explicit, individual-based simulation experiments to test these predictions and to explore further the relevance of variation in the rate of population increase, density dependence, environmental fluctuations and dispersal mortality on the evolution of dispersal rates. They confirm the predictions of our analytical approach. In addition, they show that dispersal rates in metapopulations mostly depend on dispersal mortality and inter-patch variation in population density. The latter is dominantly driven by environmental fluctuations and the rate of population increase. These conclusions are not altered by the introduction of neighbourhood dispersal. With patch capacities in the order of 100 individuals, kin competition seems to be of negligible importance for ES dispersal rates except when overall dispersal rates are low.}, subject = {Metapopulation}, language = {en} } @article{PoethkeHovestadtMitesser2003, author = {Poethke, Hans-Joachim and Hovestadt, Thomas and Mitesser, Oliver}, title = {Local extinction and the evolution of dispersal rates: Causes and correlations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47718}, year = {2003}, abstract = {We present the results of individual-based simulation experiments on the evolution of dispersal rates of organisms living in metapopulations. We find conflicting results regarding the relationship between local extinction rate and evolutionarily stable (ES) dispersal rate depending on which principal mechanism causes extinction: if extinction is caused by environmental catastrophes eradicating local populations, we observe a positive correlation between extinction and ES dispersal rate; if extinction is a consequence of stochastic local dynamics and environmental fluctuations, the correlation becomes ambiguous; and in cases where extinction is caused by dispersal mortality, a negative correlation between local extinction rate and ES dispersal rate emerges. We conclude that extinction rate, which both affects and is affected by dispersal rates, is not an ideal predictor for optimal dispersal rates.}, subject = {Ausbreitung}, language = {en} } @article{GrosHovestadtPoethke2006, author = {Gros, Andreas and Hovestadt, Thomas and Poethke, Hans Joachim}, title = {Evolution of local adaptions in dispersal strategies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45406}, year = {2006}, abstract = {The optimal probability and distance of dispersal largely depend on the risk to end up in unsuitable habitat. This risk is highest close to the habitat's edge and consequently, optimal dispersal probability and distance should decline towards the habitat's border. This selection should lead to the emergence of spatial gradients in dispersal strategies. However, gene flow caused by dispersal itself is counteracting local adaptation. Using an individual based model we investigate the evolution of local adaptations of dispersal probability and distance within a single, circular, habitat patch. We compare evolved dispersal probabilities and distances for six different dispersal kernels (two negative exponential kernels, two skewed kernels, nearest neighbour dispersal and global dispersal) in patches of different size. For all kernels a positive correlation between patch size and dispersal probability emerges. However, a minimum patch size is necessary to allow for local adaptation of dispersal strategies within patches. Beyond this minimum patch area the difference in mean dispersal distance between center and edge increases linearly with patch radius, but the intensity of local adaptation depends on the dispersal kernel. Except for global and nearest neighbour dispersal, the evolved spatial pattern are qualitatively similar for both, mean dispersal probability and distance. We conclude, that inspite of the gene-flow originating from dispersal local adaptation of dispersal strategies is possible if a habitat is of sufficient size. This presumably holds for any realistic type of dispersal kernel.}, subject = {Ausbreitung}, language = {en} } @article{PoethkePfenningHovestadt2007, author = {Poethke, Hans J. and Pfenning, Brenda and Hovestadt, Thomas}, title = {The relative contribution of individual and kin selection to the evolution of density-dependent dispersal rates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48225}, year = {2007}, abstract = {Questions: What are the relative contributions of kin selection and individual selection to the evolution of dispersal rates in fragmented landscapes? How do environmental parameters influence the relative contributions of both evolutionary forces? Features of the model: Individual-based simulation model of a metapopulation. Logistic local growth dynamics and density-dependent dispersal. An optional shuffling algorithm allows the continuous destruction of any genetic structure in the metapopulation. Ranges of key variables: Depending on dispersal mortality (0.05-0.4) and the strength of environmental fluctuations, mean dispersal probability varied between 0.05 and 0.5. Conclusions: For local population sizes of 100 individuals, kin selection alone could account for dispersal probabilities of up to 0.1. It may result in a ten-fold increase of optimal dispersal rates compared with those predicted on the basis of individual selection alone. Such a substantial contribution of kin selection to dispersal is restricted to cases where the overall dispersal probabilities are small (textless 0.1). In the latter case, as much as 30\% of the total fitness of dispersing individuals could arise from the increased reproduction of kin left in the natal patch.}, language = {en} } @article{HovestadtMitesserElmesetal.2007, author = {Hovestadt, Thomas and Mitesser, Oliver and Elmes, Graham and Thomas, Jeremy A. and Hochberg, Michael E.}, title = {An Evolutionarily Stable Strategy model for the evolution of dimorphic development in the butterfly Maculinea rebeli, a social parasite of Myrmica Ant Colonies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48165}, year = {2007}, abstract = {Caterpillars of the butterfly Maculinea rebeli develop as parasites inside ant colonies. In intensively studied French populations, about 25\% of caterpillars mature within 1 year (fast-developing larvae [FDL]) and the others after 2 years (slow-developing larvae [SDL]); all available evidence indicates that this ratio is under the control of egg-laying females. We present an analytical model to predict the evolutionarily stable fraction of FDL (pESS). The model accounts for added winter mortality of SDL, general and kin competition among caterpillars, a competitive advantage of SDL over newly entering FDL (priority effect), and the avoidance of renewed infection of ant nests by butterflies in the coming season (segregation). We come to the following conclusions: (1) all factors listed above can promote the evolution of delayed development; (2) kin competition and segregation stabilize pESS near 0.5; and (3) a priority effect is the only mechanism potentially selecting for. However, given the empirical data, pESS is predicted to fall closer to 0.5 than to the 0.25 that has been observed. In this particular system, bet hedging cannot explain why more than 50\% of larvae postpone growth. Presumably, other fitness benefits for SDL, for example, higher fertility or longevity, also contribute to the evolution of delayed development. The model presented here may be of general applicability for systems where maturing individuals compete in small subgroups.}, language = {en} }