@phdthesis{Du2019, author = {Du, Yiqiang}, title = {Gauge/Gravity Duality with Backreacting Background}, doi = {10.25972/OPUS-18786}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187869}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The topic of this thesis is generalizations of the Anti de Sitter/Conformal Field Theory (AdS/CFT) correspondence, often referred to as holography, and their application to models relevant for condensed matter physics. A particular virtue of AdS/CFT is to map strongly coupled quantum field theories, for which calculations are inherently difficult, to more tractable classical gravity theories. I use this approach to study the crossover between Bose-Einstein condensation (BEC) and the Bardeen-Cooper-Schrieffer (BCS) superconductivity mechanism. I also study the phase transitions between the AdS black hole and AdS soliton spacetime in the presence of disorder. Moreover, I consider a holographic model of a spin impurity interacting with a strongly correlated electron gas, similar to the Kondo model. In AdS/CFT, the BEC/BCS crossover is modeled by a soliton configuration in the dual geometry and we study the BEC and BCS limits. The backreaction of the matter field on the background geometry is considered, which provides a new approach to study the BEC/BCS crossover. The behaviors of some physical quantities such as depletion of charge density under different strength of backreaction are presented and discussed. Moreover, the backreaction enables us to obtain the effective energy density of the soliton configurations, which together with the surface tension of the solitons leads to an argument for the occurrence of so called snake instability for dark solitons, i.e. for the solitons to form a vortex-like structures. Disordering strongly coupled and correlated quantum states of matter may lead to new insights into the physics of many body localized (MBL) strongly correlated states, which may occur in the presence of strong disorder. We are interested in potential insulator-metal transitions induced by disorder, and how disorder affects the Hawking-Page phase transition in AdS gravity in general. We introduce a metric ansatz and numerically construct the corresponding disordered AdS soliton and AdS black hole solutions, and discuss the calculation of the free energy in these states. In the Kondo effect, the rise in resistivity in metals with scarce magnetic impurities at low temperatures can be explained by the RG flow of the antiferromagnetic coupling between the impurity and conduction electrons in CFT. The generalizations to SU(N) in the large N limit make the treatment amenable to the holographic approach. We add a Maxwell term to a previously existing holographic model to study the conductivity of the itinerant electrons. Our goal is to find the log(T) behavior in the DC resistivity. In the probe limit, we introduce junction conditions to connect fields crossing the defect. We then consider backreactions, which give us a new metric ansatz and new junction conditions for the gauge fields.}, language = {en} }