@article{EpeHaeringRamaiahetal.1993, author = {Epe, Bernd and H{\"a}ring, Martin and Ramaiah, Danaboyina and Stopper, Helga and Abou-Elzahab, Mohamed M. and Adam, Waldemar and Saha-M{\"o}ller, Chantu R.}, title = {DNA damage induced by furocoumarin hydroperoxides plus UV (360 nm)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86870}, year = {1993}, abstract = {Wben irradiated at 360 nm, furocoumarins with a hydroperoxide group in a side chain effciently give rise to a type of DNA damage that can best be explained by a photoinduced generation of hydroxyl radicals from the excited pbotosensitizers. The observed DNA damage profiles, i.e. the ratios of single-strand breaks, sites of base loss (AP sites) and base modifications sensitive to fonnamidopyrimidine-DNA glycosylase (FPG protein) and endonuclease m, are similar to the DNA damage profile produced by hydroxyl radicals generated by lonizing radiation or by xanthine and xanthine oxidase in the presence of Fe(III)-EDTA. No such damage is observed with the corresponding furocoumarin alcohols or in the absence of near-UV radiation. The damage caused by the photo-excited hydroperoxides is not influenced by superoxide dismutase (SOD) or catalase or by D2O as solvent. The presence of t-butanol, however, reduces both the formation of single-strand breaks and of base odifications sensitive to FPG protein. The cytotoxicity caused by one of the hydroperoxides in L5178Y mome lymphoma cells is found to be dependent on the near-UV irradiation and to be much higher than that of the corresponding alcohol. Therefore the new type of photoinduced damage occurs inside cells. Intercalating photosensitizers with an attached hydroperoxide group might represent a novel and versatile class of DNA damaging agents, e.g. for phototherapy.}, subject = {DNS-Sch{\"a}digung}, language = {en} } @phdthesis{Arnold2001, author = {Arnold, Markus A.}, title = {Oxidative DNA-Sch{\"a}digung durch elektronisch angeregte Carbonylverbindungen und daraus gebildete Radikalspezies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1182038}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Mittels Laserblitz-Photolyse wurden die Triplettlebenszeiten sowie die L{\"o}schraten der Triplettzust{\"a}nde verschiedener Acetophenonderivate durch dG, 8-oxodG, DNA, molekularen Sauerstoff und die Ketone selbst bestimmt. F{\"u}r AP-OAc, AP und BP wurden Triplettlebensdauern von 7-9 µs gemessen, w{\"a}hrend die Triplettzust{\"a}nde von AP-OH und AP-OtBu aufgrund alpha Spaltung deutlich kurzlebiger waren (ca. 1 µs); die alpha Spaltung konnte EPR-spektroskopisch durch Spinabfangexperimente mit DMPO und TEMPO belegt werden. Im Fall von AP-OMe wurde weder dessen Triplettzustand noch die Bildung von Radikalen detektiert, was auf einer schnell ablaufenden Norrish-Typ-II-Spaltung beruht. Aufgrund dieses photochemischen Verhaltens wurden die Ketone (mit Ausnahme von AP-OMe) in zwei Gruppen klassifiziert, n{\"a}mlich die „Gruppe A"-Ketone (keine Radikalbildung) und die „Gruppe B"-Ketone (Radikalbildner). W{\"a}hrend die „Gruppe A"-Ketone gegen{\"u}ber niedrigen Konzentrationen von DNA (62.5 µM) inaktiv waren, verursachten die bei der Bestrahlung der „Gruppe B"-Ketone generierten Peroxylradikale, neben wenigen direkt induzierten Strangbr{\"u}chen, haupts{\"a}chlich die Guaninoxidationsprodukte 8-oxoGua und guanidinfreisetzende Produkte (GRP). Erst wenn die DNA-Konzentration zehnfach erh{\"o}ht wird (625 µM), tritt bei der Photolyse der „Gruppe A"-Ketone auch DNA-Oxidation durch einen Elektronentransfer von der Guaninbase auf das angeregte Keton ein. Ein analoger Konzentrationseffekt wurde auch in der dG-Oxidation beobachtet, bei niedrigen Substratkonzentrationen sind nur die radikalbildenden „Gruppe B"-Ketone aktiv. Die Tatsache, dass in der dG-Oxidation durch die „Gruppe A"-Ketone kein 8-oxodG detektiert wurde, wurde auf dessen effiziente Oxidation durch dG•+-Radikalkationen zur{\"u}ckgef{\"u}hrt. Die „Gruppe B"-Ketone sind in Abwesenheit von O2 gegen{\"u}ber dG und DNA oxidativ inaktiv, da die in der alpha Spaltung generierten kohlenstoffzentrierten Radikale keine Peroxylradikale bilden k{\"o}nnen. Die „Gruppe A"-Ketone sind gegen{\"u}ber DNA in Abwesenheit wie auch in Anwesenheit von Sauerstoff genauso reaktiv, da der Elektronentransfer von DNA zum Keton unabh{\"a}ngig von Sauerstoff ist. Um mechanistische Einblicke in die oxidative DNA-Sch{\"a}digung zu erlangen, wurden photochemische Modellstudien mit dem Nukleosid dG sowie 8-oxodG durchgef{\"u}hrt, wobei zus{\"a}tzlich Spiroiminodihydantoin gebildet wird. Bis vor kurzem wurde die Struktur dieses Oxidationsproduktes als 4-HO-8-oxodG angenommen, dass zuerst in der dG Oxidation mit Singulettsauerstoff (1O2) beobachtet wurde. Weder Spiroiminodihydantoin noch 4 HO-8-oxodG sind als authentische Verbindungen bekannt, so dass eine zweifelsfreie Strukturaufkl{\"a}rung die Bestimmung der Konnektivit{\"a}t der markierten Positionen erforderte. Diese Zuordnung erfolgte mittels eines SELINQUATE-NMR Spektrums, mit dem schl{\"u}ssig die 4 HO-8-oxodG-Struktur ausgeschlossen wurde. Wie alle „Gruppe B"-Ketone sind auch alle „Gruppe A"-Ketone in Abwesenheit von O2 mit Ausnahme von AP-OAc gegen{\"u}ber dG inert. Dies ist ein Beleg daf{\"u}r, dass der Elektronentransferschritt von dG zum Keton in Abwesenheit von Sauerstoff (im Gegensatz zur DNA-Oxidation) reversibel ist und daher keine Oxidation m{\"o}glich ist, wenn die Ketylradikale nicht durch O2 abgefangen werden. Das aus AP-OAc gebildete Ketylradikal besitzt als einziges einen effektiven unimolekularen Deaktivierungsweg, n{\"a}mlich die Acetation-abspaltung, so dass die Reversibilit{\"a}t nicht mehr m{\"o}glich ist.}, subject = {DNS-Sch{\"a}digung}, language = {de} } @phdthesis{Marquardt2002, author = {Marquardt, Stefan}, title = {DNA-Sch{\"a}digung durch photochemische Alkoxylradikalquellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1182591}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Reaktive Sauerstoffspezies induzieren oxidative DNA-Sch{\"a}den (Oxidativer Stress) und spielen daher eine entscheidende Rolle bei Mutagenese, Kanzerogenese und Alterung. Durch die zunehmende terrestrische UV-Strahlung, die die Generierung solcher Spezies f{\"o}rdert, ist dieses Thema von besonderer Aktualit{\"a}t. W{\"a}hrend die Reaktivit{\"a}t von Hydroxylradikalen gegen{\"u}ber DNA bereits intensiv erforscht worden ist, sind die photobiologischen Wirkungen von Alkoxylradikalen bisher kaum untersucht. Vor diesem Hintergrund sollten neue photochemische Alkoxylradikalquellen entwickelt und deren Reaktivit{\"a}t gegen{\"u}ber Nukleins{\"a}uren mit dem bereits etablierten System Perester I verglichen werden. Auf diese Weise sollte ein allgemeines DNA-Schadensprofil von Alkoxylradikalen aufgestellt und deren Wirkungsgrad ermittelt werden. 1. Das wasserl{\"o}sliche Pyridon IIb ist aus dem entsprechenden Hydroxyderivat IIa durch Alkylierung mit tert-Butylbromid unter SN1-Bedingungen synthetisiert worden (Schema I). Seine photolytische Zersetzung f{\"u}hrt zu den Produkten 2-Pyridon IIIa (30 Prozent) und 3-tert-Butoxy-2-pyridon IIIb (27 Prozent). Bei Bestrahlung sowohl in organischen L{\"o}sungsmitteln (Benzol) als auch in w{\"a}ssrigem Medium erfolgt Freisetzung von tert-Butoxylradikalen, die EPR-spektroskopisch durch Spinabfang mit DMPO als DMPO-OtBu-Addukt nachgewiesen werden. In w{\"a}ssrigem Medium, unter Ausschluss von molekularem Sauerstoff werden zus{\"a}tzlich DMPO-Addukte von Methylradikalen (DMPO-Me) detektiert. Mit abnehmender Konzentration an eingesetztem DMPO entsprechen diese den Hauptradikaladdukten. Auch bei Photolyse der bereits etablierten tert-Butoxylradikalquelle Perester I werden unter diesen Bedingungen haupts{\"a}chlich Methylradikale abgefangen. Letztere werden aus den tert-Butoxylradikalen durch \&\#946;-Fragmentierung generiert. In Gegenwart von superhelikaler pBR 322 DNA induzieren die von tert-Butoxypyridon IIb photolytisch freigesetzten Radikale Einzelstrangbr{\"u}che. 2'-Desoxyguanosin (dG) wird durch Pyridon IIb bei Bestrahlung unter aeroben Bedingungen vorwiegend zu Guanidin-freisetzenden Produkten (z.B. Oxazolon) oxidiert, w{\"a}hrend 8-oxodG in nur vernachl{\"a}ssigbaren Mengen gebildet wird. Der Perester I zeigt ein analoges Schadensprofil. Die Reduktion der DNA- und dG-Sch{\"a}digung durch den Zusatz von Radikalf{\"a}ngern manifestiert, dass die von Pyridon IIb freigesetzten Radikale die Oxidantien sind. Photosensibilisierte oxidative Sch{\"a}digung durch die Photoprodukte der Radikalquelle werden durch zeitabh{\"a}ngige Studien ausgeschlossen. Diese ergeben, dass nach vollst{\"a}ndiger photo-lytischer Zersetzung des Pyridons IIb keine Schadensbildung sowohl an dG als auch an pBR 322 DNA mehr erfolgt. Unter Ausschluss von molekularem Sauerstoff induziert die Photolyse von Pyridon IIb und Perester I die Bildung von 8-MedG (2.3 Prozent f{\"u}r Pyridon IIb, 2.0 Prozent f{\"u}r Perester I) in beachtlichen Ausbeuten. Auch N7-MedG (0.3 Prozent) konnte detektiert werden. Daraus wird auf eine erhebliche Schadensbildung durch Methylradikale geschlossen. Unter Ber{\"u}cksichtigung der jeweiligen Geschwindigkeitskonstanten und der verwendeten dG-Konzentration wird ermittelt, dass weniger als 0.3 Prozent der aus Perester I oder Pyridon IIb freigesetzten tert-Butoxylradikale direkt mit dG reagieren, w{\"a}hrend mehr als 99 Prozent zu Methylradikale fragmentieren. Fazit 1: Das Pyridon IIb ist eine photochemische Quelle f{\"u}r tert-Butoxylradikale und zeigt das gleiche Schadensprofil gegen{\"u}ber dG und DNA wie der Perester I. Die tert-Butoxylradikale k{\"o}nnen jedoch als sch{\"a}digende Spezies ausgeschlossen werden, da sie viel effizienter zu Methylradikalen fragmentieren als mit dG reagieren. Die aus den Methylradikalen in Gegenwart von Sauerstoff gebildeten Methylperoxyl-radikale und deren Folgeradikale sind f{\"u}r die beobachteten Sch{\"a}den verantwortlich. 2. Neben dem tert-Butoxypyridon IIb werden auch die Isopropoxylradikalquellen Pyridon IIc und Thiazolthion IV untersucht. Laserblitz-Studien ergeben, dass f{\"u}r beide Systeme die NO-Bindungsspaltung der dominierende erste photochemische Prozess ist [\&\#1060;N-O = (75 ± 8)Prozent f{\"u}r Pyridon IIc und \&\#1060;N-O = (65 ± 7)Prozent f{\"u}r Thiazolthion IV]. Im Falle des Thiazolthions IV zeigen sowohl Laserblitz-Experimente als auch Produktstudien auf, dass bei der Photolyse zun{\"a}chst das Disulfid V gebildet wird, aus dem dann durch CS-Bindungsspaltung die Produkte VI-VIII hervorgehen. Das Isopropoxypyridon IIc liefert in Analogie zu dem tert-Butoxyderivat IIb die Photoprodukte 2-Pyridon IIIa und 3-Isopropoxy-2-pyridon IIIc. Die photolytische NO-Bindungsspaltung wird f{\"u}r beide Photo-Fenton-Reagenzien dadurch weiter best{\"a}tigt, dass in Gegenwart von DMPO in Benzol die Bildung von Isopropoxylradikal-Addukten EPR-spektroskopisch nachgewiesen wird. In w{\"a}ssrigem Medium (H2O : MeCN = 60 : 40) wird bei Bestrahlung von Pyridon IIc eine Mischung von Isopropoxyl- (DMPO-OiPr) und 2-Hydroxyprop-2-ylradikalen (DMPO-CMe2OH) mit DMPO abgefangen. Letztere Radikale gehen aus dem Isopropoxylradikal durch H-Shift hervor und werden bei Einsatz geringer Konzentrationen an DMPO EPR-spektroskopisch haupts{\"a}chlich detektiert (Schema II). Bei Bestrahlung in reinem Wasser sind diese die einzig abgefangenen Radikalspezies. Im Gegensatz dazu liefert das Thiazolthion IV unter jeglichen Bedingungen ausschließlich die DMPO-Addukte der Isopropoxylradikale. Kontrollexperimente ergeben, dass im Falle des Thiazolthions IV die 2-Hydroxyprop-2-ylradikale schneller von dem Photoprodukt Disulfid V als von DMPO abgefangen werden. Deshalb werden diese Kohlenstoffradikale nicht als DMPO-Addukte bei der Photolyse des Thiazolthions IV im EPR-Spektrum nachgewiesen, sondern ausschließlich die Isopropoxylradikaladdukte DMPO-OiPr. Fazit 2: Sowohl das Pyridon IIc als auch das Thiazolthion IV zerfallen durch photolytischen NO-Bindungsbruch unter Freisetzung von Isopropoxylradikalen, die in w{\"a}ssrigem Medium zu 2-Hydroxyprop-2-ylradikalen umlagern. Im Falle des Thiazolthions IV verhindert das Disulfid V, dass diese Spezies mit DMPO abgefangen werden, im Falle des Pyridons IIc sind sie die dominiernden DMPO-Radikalspezies im EPR-Spektrum. 3. Sowohl das Pyridon IIc (17 Prozent) als auch das Thiazolthion IV (12 Prozent) induzieren unter Bestrahlung in superhelikaler pBR 322 DNA in einem L{\"o}sungsmittelgemisch von H2O : MeCN = 60 : 40 nur geringe Mengen an offen-circularer DNA. In reinem Wasser hingegen, zeigt das Pyridon IIc eine viel h{\"o}here Reaktivi{\"a}t zur Strangbruchbildung (32 Prozent offen-circulare DNA). Da in diesem Medium die 2-Hydroxyprop-2-ylradikale als einzige Spezies detektiert worden sind, sollten unter diesen Bedingungen Oxylradikale f{\"u}r die Strangbruchbildung verantwortlich sein, die aus den 2-Hydroxyprop-2-ylradikalen nach Addition von Luftsauerstoff hervorgehen. Die schwache Induktion von Strangbr{\"u}chen durch das Thiazolthion IV wird auf die Isopropoxylradikale zur{\"u}ckzuf{\"u}hren sein, da diese die einzigen Intermediate sind, die bei Bestrahlung dieses Photo-Fenton-Reagenzes detektiert werden. Fazit 3: Die von Pyridon IIc generierten 2-Hydroxyprop-2-ylradikale zeigen nach Addition von molekularem Sauerstoff eine h{\"o}here Aktivit{\"a}t zur Strangbruchbildung als die von Thiazolthion IV freigesetzten und ausschließlich detektierten Isopropoxylradikale.}, subject = {DNS-Sch{\"a}digung}, language = {de} } @phdthesis{Vukicevic2004, author = {Vukicevic, Vladimir}, title = {Mechanisms of apoptosis modulation and their contribution to genomic instability in tumor cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10605}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {The concept of programmed cell death has been increasingly considered from various aspects since early 1970's. Primarily, knowledge of apoptosis referred to morphological changes in which chromatin is condensed and increasingly fragmented, revealed as small structure in the nucleus. The membrane shrinks and the cell becomes dense as can be seen by flow cytometry. Interestingly, similar modes of cell deletion were observed in nematodes indicating that apoptosis is a highly conserved machinery. Three Caeonorhabditis elegans gene products are found to have high homology with mammalian apoptotic genes: CED-9 inhibits apoptosis and is related to bcl-2; CED-3 and CED-4 promote apoptosis and are related to caspase 9 and APAF-1. Apoptosis is not accidental death, but a highly controlled and medically important molecular process. More general terms such as 'physiological' or 'regulated' cell death cover different morphologies and sequences. Programmed suicide of cells that were subjected to toxic exogenous and endogenous stimuli plays a key role in understanding cancer development and its treatment. Apoptosis involves sequences of events that may overlap and play contradictory or antagonistic roles in cell death. Generally, the ability to trigger apoptotic processes in cancer cells would benefit an organism by keeping homeostasis intact. Programmed cell death is a regularly present mechanism, for instance, in lymphocyte recruitment in the thymus where immature lymphocytes may recognize host antigens. Therefore, such lymphocytes become apoptotic and are removed by macrophages. Removal prevents possible autoimmune diseases. Unlike apoptosis, necrosis is a passive process of cell death recognizable by membrane morphological changes and accompanied by leakage of intracellular material into intercellular space that may cause inflammation in the organism. Signals that may initiate apoptosis are generally classified into two groups: signals that launch extrinsic apoptotic pathways starting with aggregation of death receptors and intrinsic apoptotic pathways starting with disruption of intracellular homeostasis such as the release of mitochondrial factors or DNA degradation. Early in the process, apoptotic signals may lead to a broad range of signaling mechanisms such as DNA repair and assessment of DNA damage (check points). Thus, failure in any of these steps can cause a defective apoptotic response that plays a decisive role in both tumorigenesis and drug resistance in tumor treatment. More distinctly, the capability of cancer cells to go into apoptosis prevents further neoplastic changes. Generally, the purpose of this study is to investigate the balance between formation of genomic damage and induction of apoptosis under genotoxic stress. After genotoxic insult there are different possibilities for the fate of a cell (Figure 1). The genomic integrity is analyzed at cellular checkpoints, usually leading to a delay in cell cycle progression if DNA was damaged. Mutations in genes such as p53 and p21 change the cellular response to genotoxic stress and may alter the balance between apoptosis and genomic damage. However, p53 is usually mutated or not expressed in 70\% of human tumors. Alterations in p53 states that reflect distinct apoptotic response upon induction of DNA damage were examined. In this study, three cell lines with distinct p53 states were used: TK6 harboring wild-type p53, WTK1 with mutated p53 and NH32 with knocked out p53. In the present work we applied different approaches to investigate the correlation between DNA damage and apoptotic responsiveness in cancer cell lines with different p53 states or in hormone responsive cell lines with over expressed bcl-2 gene. We were focused on effects caused by temporary down regulation of the p53 and Bcl-2 activity in human lymphoblastoid cell lines. In addition, we investigated the impact of estradiol-induced proliferation on apoptosis and DNA damage in stably transfected cells with bcl-2gene.}, subject = {Apoptosis}, language = {en} } @phdthesis{Brink2007, author = {Brink, Andreas}, title = {The biological significance of chemically-induced DNA adducts in relation to background DNA damage}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {No abstract available}, subject = {DNS-Sch{\"a}digung}, language = {en} } @phdthesis{Jonas2008, author = {Jonas, Ren{\´e}}, title = {Arsen-induzierte Zyto- und Gentoxizit{\"a}t sowie deren Modulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28772}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Arsen ist daf{\"u}r bekannt, dass es mutagen und kanzerogen wirkt und ein gentoxisches Potential besitzt. Die Mechanismen, durch die diese Effekte ausge{\"u}bt werden, sind noch nicht vollst{\"a}ndig aufgekl{\"a}rt. Es konnte jedoch gezeigt werden, dass Parameter, die mit der Freisetzung reaktiver Sauerstoffspezies (ROS), z.B. Superoxiddismutaseaktivit{\"a}t und H{\"a}moxygenase-Genexpression, und Ver{\"a}nderungen des epigenetischen Musters der DNA, z.B. Depletion von S-Adenosylmethionin, in Zusammenhang stehen, durch Arsen beeinflusst werden. In dieser Studie wurde versucht, das gentoxische Potential von Arsen mit Hilfe des Comet Assay, eines Standard-Gentoxizit{\"a}tstests, zu charakterisieren sowie zu pr{\"u}fen, ob dieser Test eine geeignete Messmethode f{\"u}r die gentoxische Wirkung von Arsen darstellt. Dies wurde unter Heranziehung verschiedener additiver Messgr{\"o}ßen wie der Vitalit{\"a}t und der Proliferation sowie der parallelen Quantifizierung der Mitose-, C-Mitose-, Mikrokern- und Apoptosefrequenzen der verwendeten murinen L5178Y-Zellen durchgef{\"u}hrt. Des Weiteren wurde der den Arsen-bedingten DNA-Sch{\"a}den zugrundeliegende Mechanismus genauer beleuchtet. Unter Zuhilfenahme verschiedener Modulatoren wurden durch Arsen induzierter oxidativer Stress und durch Arsen induzierte Ver{\"a}nderung der epigenetischen DNA-Struktur untersucht. Ferner wurde gepr{\"u}ft, inwieweit die Inhibition von oxidativem Stress und Hypomethylierung der DNA zur Verringerung von potenziellen Folgen wie der Entstehung unnat{\"u}rlicher Mitosemorphologien und chromosomaler Aberrationen beitragen k{\"o}nnen, die wiederum eventuell in der Entstehung von Karzinomen resultieren k{\"o}nnen. F{\"u}r die Modulation der Freisetzung von ROS wurden als prooxidative Substanz 4-Nitrochinolin-1-Oxid und als Antioxidantien Benfotiamin (Vitamin-B1-Prodrug), N-Acetylcystein (NAC) und \&\#945;-Tocopherol (Vitamin E) ausgew{\"a}hlt. Das Methylierungs¬muster der DNA sollte durch das hypomethylierende Agens 5-Azacytidin und durch die potenziell hypermethylierenden Verbindungen S-Adenosylmethionin (SAM) und Folat beeinflusst werden. Die Untersuchungen bez{\"u}glich des gentoxischen Potentials von Arsen und die Eignung des Comet Assay f{\"u}r dessen Quantifizierung ergaben, dass unter Miteinbeziehung der erw{\"a}hnten additiven Parameter und der Quantifizierung nach Behandlung mit unterschiedlichen Arsen-Konzentrationen nach unterschiedlich langen Behandlungszeiten die im Comet Assay erzielten Werte als korrekt und zuverl{\"a}ssig angesehen werden k{\"o}nnen. Des Weiteren zeigten die Untersuchungen der Freisetzung von ROS und der Ver{\"a}nderung des DNA-Methylierungsmusters mit Hilfe von Modulatoren, dass beide Mechanismen an den Arsen-induzierten Effekten beteiligt sind. Nicht nur konnte mit Hilfe der Modulatoren jeweils die Inhibition der Freisetzung von ROS und der DNA-Hypomethylierung erreicht werden, es konnte zudem gezeigt werden, dass die Substanzen auch die Reduktion der erh{\"o}hten Anzahl unnat{\"u}rlicher Mitosemorphologien und chromosomaler Aberrationen bewirkten. Dieser Zusammenhang konnte in dieser Studie zum ersten Mal aufgezeigt werden und k{\"o}nnte im Hinblick auf die potenzielle Erniedrigung der Krebsinzidenzen durch Supplementierung der Bev{\"o}lkerung in Gebieten mit Arsen-belastetem Trinkwasser mit den genannten Modulatoren von Bedeutung sein.}, subject = {Oxidativer Stress}, language = {de} } @phdthesis{Mannefeld2009, author = {Mannefeld, Mirijam}, title = {Role of the human LIN complex in DNA damage induced regulation of gene expression}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39261}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In jeder menschlichen Zelle entstehen t{\"a}glich ca. 10.000 - 150.000 endogene DNA Sch{\"a}den. Eine Anh{\"a}ufung dieser L{\"a}sionen kann zu genetischer Instabilit{\"a}t f{\"u}hren und dadurch zur Krebsentwicklung beitragen. Daher ist eine schnelle DNA Schadensantwort n{\"o}tig, um schwerwiegende Folgen f{\"u}r die Zelle zu vermeiden. Da bekannt ist, dass der Multiproteinkomplex LINC (auch humaner dREAM-Komplex genannt) an der transkriptionellen Regulation mitotischer und G2-spezifischer Gene beteiligt ist, sollte in dieser Arbeit seine Beteiligung an der DNA Schadensantwort genauer untersucht werden. In der vorliegenden Arbeit wird gezeigt, dass in normal wachsenden Zellen B-MYB an den LINC-Kernkomplex bindet, welcher sich aus 5 Proteinen zusammensetzt: LIN-9, LIN-54, LIN-52, LIN-37 und RbAp48. Treten DNA Sch{\"a}den auf, dissoziiert B-MYB vom LINC Kernkomplex wobei gleichzeitig die Bindung von p130 und E2F4 an LINC induziert wird. Zus{\"a}tzlich konnte gezeigt werden, dass der Signalweg, der die LINC Umlagerung vermittelt, sowohl p53- als auch p21-abh{\"a}ngig ist. p53 negative Zellen k{\"o}nnen nach Sch{\"a}digung der DNA weder einen G1 Block induzieren noch einen G2 Block langfristig aufrechterhalten. Eine Erkl{\"a}rung f{\"u}r diese Schw{\"a}chung des G2 Arrests liefern Daten dieser Arbeit: Da in DNA gesch{\"a}digten p53 -/- Zellen keine LINC Umlagerung beobachtet werden kann und zus{\"a}tzlich B-MYB verst{\"a}rkt an LINC und die Zielpromotoren bindet, kommt es zu einer erh{\"o}hten G2/M Genexpression. Dies resultiert h{\"a}ufig in einem verfr{\"u}hten Wiedereintritt in den Zellzyklus („checkpoint adaptation"). Eine Daten-Analyse prim{\"a}rer Brustkrebstumore zeigte außerdem, dass erh{\"o}hte B-MYB Genexpressionslevel mit einer erh{\"o}hte R{\"u}ckfallgefahr und einer schlechten Prognose korrelieren, was m{\"o}glicherweise auf die Funktion von B-MYB w{\"a}hrend der „checkpoint adaptation" zur{\"u}ckzuf{\"u}hren ist. Schlussendlich lassen die Ergebnisse dieser Arbeit vermuten, dass die Hemmung der B-MYB Funktion in solchen Tumoren, die p53 Mutationen tragen, die Wahrscheinlichkeit eines Behandlungserfolges vergr{\"o}ßern und die Wahrscheinlichkeit eines R{\"u}ckfalls senken k{\"o}nnte.}, subject = {Zellzyklus}, language = {en} } @phdthesis{Queisser2010, author = {Queisser, Nina}, title = {Oxidative and nitrosative stress induced by the mineralocorticoid aldosterone - Mechanism of induction and role of signal transduction pathways and transcription factors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53566}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Several epidemiological studies found that hypertensive patients have an increased risk to develop kidney cancer. Hyperaldosteronism frequently results in arterial hypertension and contributes to the development and progression of kidney injury, with reactive oxygen species (ROS) playing an important role. ROS are thought to be associated with many pathological conditions such as cancer and other disorders, like cardiovascular complications , which often go along with hypertension. The aim of the present work was to investigate whether the effects of elevated aldosterone concentrations might be involved in the increased cancer incidence of hypertensive individuals. First, the potential capacity of aldosterone to induce oxidative stress and DNA damage was investigated in vitro and in vivo. In LLC-PK1 porcine kidney cells and MDCK canine kidney cells the significant formation of ROS, and especially of superoxide (O2˙ˉ) was assessed. With two genotoxicity tests, the comet assay and the micronucleus frequency test, the DNA damaging potential of aldosterone was quantified. In both genotoxicity tests a dose-dependent increase in aldosterone-induced structural DNA damage was observed. Oxidative stress and DNA damage were prevented by antioxidants, suggesting ROS as a major cause of DNA damage. Furthermore, the oxidatively modified DNA lesion 8-oxo-7,8-dihydro-2´-deoxyguanosine (8-oxodG), was found to be significantly elevated. In kidneys of rats with desoxycorticosterone acetate (DOCA)/salt-induced hypertension, which is a model of severe mineralocorticoid-dependent hypertension, elevated levels of ROS and superoxide were found, compared to kidneys of sham rats. Also DNA strand breaks, measured with the comet assay and double strand breaks, visualized with antibodies against the double strand break-marker gamma-H2AX were significantly elevated in kidneys of DOCA/salt-treated rats. In addition, significantly increased amounts of 8-oxodG were detected. Proliferation of kidney cells was found to be increased, which theoretically enables the DNA damage to manifest itself as mutations, since the cells divide. Second, the effects of aldosterone on the activation of transcription factors and signaling pathways were investigated. A significant activation of the potentially protective transcription factor Nrf2 was observed in LLC-PK1 cells. This activation was triggered by an increase of ROS or reactive nitrogen species (RNS). In response to oxidative stress, glutathione synthesis and detoxifying enzymes, such as the subunits of the glutathione-cysteine-ligase or heme oxygenase 1 were rapidly induced after 4 h. Nevertheless, after 24 h a decrease of glutathione levels was observed. Since ROS levels were still high after 24 h, but Nrf2 activation decreased, this adaptive survival response seems to be transient and quickly saturated and overwhelmed by ROS/RNS. Furthermore, Nrf2 activation was not sufficient to protect cells against oxidative DNA damage, because the amounts of double strand breaks and 8-oxodG lesions steadily rose up to 48 h of aldosterone treatment. The second transcription factor that was time- and dose-dependently activated by aldosterone in LLC-PK1 and MDCK cells was NF-kappaB. Furthermore, a significant cytosolic and nuclear activation of ERK was detected. Aldosterone induced the phosphorylation of the transcription factors CREB, STAT1 and STAT3 through ERK. Third, the underlying mechanisms of oxidant production, DNA damage and activation of transcription factors and signaling pathways were studied. Aldosterone exclusively acted via the MR, which was proven by the MR antagonists eplerenone, spironolactone and BR-4628, whereas the glucocorticoid receptor (GR) antagonist mifepristone did not show any effect. Furthermore, aldosterone needed cytosolic calcium to exert its negative effects. Calcium from intracellular stores and the influx of calcium across the plasma membrane was involved in aldosterone signaling. The calcium signal activated on the one hand, the prooxidant enzyme complex NAD(P)H oxidase through PKC, which subsequently caused the generation of O2˙ˉ. On the other hand, nitric oxide synthase (NOS) was activated, which in turn produced NO. NO and O2˙ˉ can react to the highly reactive species ONOO- that can damage the DNA more severely than the less reactive O2˙ˉ. In the short term, the activation of transcription factors and signaling pathways could be a protective response against aldosterone-induced oxidative stress and DNA damage. However, a long-term NF-B and ERK/CREB/STAT activation by persistently high aldosterone levels could unfold the prosurvival activity of NF-kappaB and ERK/CREB/STAT in aldosterone-exposed cells. DNA damage caused by increased ROS might become persistent and could be inherited to daughter cells, probably initiating carcinogenesis. If these events also occur in patients with hyperaldosteronism, these results suggest that aldosterone could be involved in the increased cancer incidence of hypertensive individuals.}, subject = {Aldosteron}, language = {en} } @phdthesis{Mueller2010, author = {M{\"u}ller, Judith}, title = {Die Rolle der HectH9/Mcl1-Interaktion in der Myc-induzierten Apoptose und Auswirkungen der Myc V394D-Mutation auf die von c-Myc gesteuerten Tumorgenese in einem transgenen Mausmodell}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55789}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {W{\"a}hrend der Entstehung von Tumoren k{\"o}nnen zwei Mechanismen auftreten, die beide von der Aktivit{\"a}t der Onkogene abh{\"a}ngig sind und die Tumorgenese einschr{\"a}nken. F{\"u}r das Onkogen Myc ist gezeigt, dass es sowohl Apoptose als auch unter bestimmten Umst{\"a}nden Seneszenz ausl{\"o}sen kann und damit sein eigenes onkogenes Potential limitiert. Im Rahmen dieser Arbeit konnte ich mich mit diesen Tumor-suppressiven Mechanismen in zwei unabh{\"a}ngigen Teilprojekten besch{\"a}ftigen. Eine erh{\"o}hte Expression von Myc steigert die Proliferation der Zellen, induziert aber gleichzeitig Doppelstrangbr{\"u}che an der DNA. Durch den dadurch entstandenen Schaden wird die DNA-Schadensantwort ausgel{\"o}st, die zum Beispiel zur Phosphorylierung von H2A.X durch die Kinasen Atm und Atr f{\"u}hrt. Ein weiteres putatives Zielprotein dieser Kinasen ist HectH9, das abh{\"a}ngig vom DNA-Schaden das mitochondriale Protein Mcl1 ubiquitiniert und es damit f{\"u}r den proteasomalen Abbau markiert. Im ungestressten Zustand interagiert das in der mitochondrialen Membran lokalisierte Protein Mcl1 mit proapoptotischen Proteinen und h{\"a}lt deren inerten Status aufrecht. Die Reduktion der Mcl1-Mengen ist essentiell, um die proapoptotischen Proteine zu aktivieren, dadurch die Freisetzung von Zytochrom C aus dem Mitochondrium zu veranlassen und damit den Prozess der Apoptose einleiten zu k{\"o}nnen. Anhand der in dieser Arbeit dokumentierten Daten bietet sich Mcl1 als potentielles Zielprotein f{\"u}r pharmazeutisch Strategien zur Therapie Myc-induzierter Tumore an. Im Idealfall erh{\"o}ht eine verst{\"a}rkte Reduktion seiner Proteinmengen die zellul{\"a}re Apoptose und verringert somit das Tumorwachstum. Im murinen T-Zell-Lymphom wird die Myc-abh{\"a}ngige Tumorgenese durch eine Mutation der Proteinsequenz von Myc verlangsamt. Diese Mutation unterbindet die Bindung von Myc zu Miz1 und verhindert dadurch die Repression von Zielgenen. Abh{\"a}ngig von der Interaktion von Myc zu Miz1 gelingt die Inhibition der Transkription des Zellzyklusinhibitors p15Ink4b. Die Interaktion von Myc und Miz1 ist essentiell um die TGFbeta-abh{\"a}ngige Seneszenz zu umgehen. Dar{\"u}ber hinaus ist Myc direkt an der Repression von TGFbeta beteiligt. Entgegen der bisher verwendeten Modelle konnte in dieser Arbeit gezeigt werden, dass Myc unabh{\"a}ngig von Miz1 zu den Promotoren der reprimierten Zielgene rekrutiert wird und die Bindung der beiden Proteine offensichtlich nur f{\"u}r die Transrepression essentiell ist.}, subject = {Myc}, language = {de} } @phdthesis{Fazeli2010, author = {Fazeli, Gholamreza}, title = {Signaling in the induction of genomic damage by endogenous compounds}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55634}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Reactive oxygen species (ROS) are continuously generated in cells and are involved in physiological processes including signal transduction but also their damaging effects on biological molecules have been well described. A number of reports in the literature implicate excessive oxidative stress and/or inadequate antioxidant defense in the pathogenesis of cancer, atherosclerosis, chronic and age related disorders. Several studies have indicated that activation of the renin-angiotensin-aldosterone-system can lead to the formation of ROS. Epidemiological studies have revealed higher renal cell cancer incidences and also higher cancer mortalities in hypertensive individuals. Recently, our group has shown that perfusion of the isolated mouse kidney with Ang II or treatment of several cell lines with Ang II leads to formation of DNA damage and oxidative base modifications. Here, we tried to scrutinize the pathway involved in genotoxicity of Ang II. We confirmed the genotoxicity of Ang II in two kidney cell lines of human origin. Ang II treatment led to the production of superoxide anions which we could hinder when we used the membrane permeable superoxide dismutase (SOD) mimetic TEMPOL. One of the enzymes which is activated in the cells after Ang II treatment and is able to produce ROS is NADPH oxidase. We demonstrated the activation of NADPH oxidase in response to Ang II by upregulation of its p47 subunit using RT-PCR. Also, pPhosphorylation of p47 subunit of NADPH oxidase after Ang II treatment was enhanced. Using two inhibitors we showed that NADPH oxidase inhibition completely prevents DNA damage by Ang II treatment. To differentiate between Nox2 and Nox4 isoforms of NADPH oxidase subunits in the genotoxicity of Ang II, we performed siRNA inhibition and found a role only for Nox4, while Nox2 was not involved. Next, we investigated PKC as a potential activator of NADPH oxidase. We showed that PKC becomes phosphorylated after Ang II treatment and also that inhibition of PKC hinders Ang II from damaging the cells. Our results from using several inhibitors of different parts of the pathway revealed that PKC activation in this pathway is dependent on the action of PLC on membrane phospholipids and production of IP3. IP3 binds to its receptor at endoplasmic reticulum (ER), opening a channel which allows calcium efflux into the cytoplasm. In this manner, both ER calcium stores and extracellular calcium cooperate so that Ang II can exert its genotoxic effect. PLC is activated by AT1R stimulation. We could also show that the genotoxicity of Ang II is mediated via AT1R signaling using the AT1R antagonist candesartan. In conclusion, here we have shown that Ang II is able to damage genomic damage in cell lines of kidney origin. The observed damage is associated with production of ROS. A decrease in Ang II-induced DNA damage was observed after inhibition of G-proteins, PLC, PKC and NADPH oxidase and interfering with intra- as well as extracellular calcium signaling. This leads to the following preliminary model of signaling in Ang II-induced DNA damage: binding of Ang II to the AT1 receptor activates PLC via stimulation of G-proteins, resulting in the activation of PKC in a calcium dependent manner which in turn, activates NADPH oxidase. NADPH oxidase with involvement of its Nox4 subunit then produces reactive oxygen species which cause DNA damage. Dopamine content and metabolism in the peripheral lymphocytes of PD patients are influenced by L-Dopa administration. The PD patients receiving a high dose of L-Dopa show a significantly higher content of dopamine in their lymphocytes compared to PD patients who received a low dose of L-Dopa or the healthy control. Central to many of the processes involved in oxidative stress and oxidative damage in PD are the actions of monoamine oxidase (MAO), the enzyme which is responsible for the enzymatic oxidation of dopamine which leadsing to production of H2O2 as a by-product. We investigated whether dopamine oxidation can cause genotoxicity in lymphocytes of PD patents who were under high dose L-Dopa therapy and afterward questioned the occurrence of DNA damage after dopamine treatment in vitro and tried to reveal the mechanism by which dopamine exerts its genotoxic effect. The frequency of micronuclei in peripheral blood lymphocytes of the PD patients was not elevated compared to healthy age-matched individuals, although the formation of micronuclei revealed a positive correlation with the daily dose of L-Dopa administration in patients who received L-Dopa therapy together with dopamine receptor agonists. In vitro, we describe an induction of genomic damage detected as micronucleus formation by low micromolar concentrations in cell lines with of different tissue origins. The genotoxic effect of dopamine was reduced by addition of the antioxidants TEMPOL and dimethylthiourea which proved the involvement of ROS production in dopamine-induced DNA damage. To determine whether oxidation of dopamine by MAO is relevant in its genotoxicity, we inhibited MAO with two inhibitors, trans-2-phenylcyclopropylamine hydrochloride (PCPA) and Ro 16-6491 which both reduced the formation of micronuclei in PC-12 cells. We also studied the role of the dopamine transporter (DAT) and dopamine type 2 receptor (D2R) signaling in the genotoxicity of dopamine. Inhibitors of the DAT, GBR-12909 and nomifensine, hindered dopamine-induced genotoxicity. These results were confirmed by treatment of MDCK and MDCK-DAT cells, the latter containing the human DAT gene, with dopamine. Only MDCK-DAT cells showed elevated chromosomal damage and dopamine uptake. Although stimulation of D2R with quinpirole in the absence of dopamine did not induce genotoxicity in PC-12 cells, interference with D2R signaling using D2R antagonist and inhibition of G-proteins, phosphoinositide 3 kinase and extracellular signal-regulated kinases reduced dopamine-induced genotoxicity and affected the ability of DAT to take up dopamine. Furthermore, the D2R antagonist sulpiride inhibited the dopamine-induced migration of DAT from cytosol to cell membrane. Overall, the neurotransmitter dopamine causes DNA damage and oxidative stress in vitro. There are also indications that high dose L-Dopa therapy might lead to oxidative stress. Dopamine exerts its genotoxicity in vitro upon transport into the cells and oxidization oxidation by MAO. Transport of dopamine by DAT has the central role in this process. D2R signaling is involved in the genotoxicity of dopamine by affecting activation and cell surface expression of DAT and hence modulating dopamine uptake. We provided evidences for receptor-mediated genotoxicity of two compounds with different mechanism of actions. The involvement of these receptors in many human complications urges more investigations to reveal whether abnormalities in the endogenous compounds-mediated signaling can play a role in the initiation of new conditions like carcinogenesis.}, subject = {Angiotensin II}, language = {en} }