@phdthesis{Beer2021, author = {Beer, Katharina Beate}, title = {Identification and characterization of TAT-5 interactors that regulate extracellular vesicle budding}, doi = {10.25972/OPUS-20672}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cells from bacteria to man release extracellular vesicles (EV) such as microvesicles (MV) that carry signaling molecules like morphogens and miRNAs to control intercellular communication during health and disease. MV release also sculpts membranes, e.g. repairing damaged membranes to avoid cell death. HIV viruses also bud from the plasma membrane in a similar fashion. In order to determine the in vivo functions of MVs and regulate their release, we need to understand the mechanisms of MV release by plasma membrane budding (ectocytosis). The conserved phospholipid flippase TAT-5 maintains the asymmetric localization of phosphatidylethanolamine (PE) in the plasma membrane and was the only known inhibitor of ESCRT-mediated ectocytosis in C. elegans. Loss of TAT-5 lipid flipping activity increased the externalization of PE and accumulation of MVs. However, it was unclear how cells control TAT-5 activity to release the right amount of MVs at the right time, since no upstream regulators of TAT-5 were known. To identify conserved TAT-5 regulators we looked for new proteins that inhibit MV release. To do so, we first developed a degradation-based technique to specifically label MVs. We tagged a plasma membrane reporter with the endogenous ZF1 degradation tag (degron) and expressed it in C. elegans embryos. This reporter is protected from degradation inside MVs, but is degraded inside the cell. Thus, the fluorescence is selectively maintained inside MVs, creating the first MV-specific reporter. We identified four MV release inhibitors associated with retrograde recycling, including the class III PI3Kinase VPS-34, Beclin1 homolog BEC-1, DnaJ protein RME-8, and the uncharacterized Dopey homolog PAD-1. We found that VPS-34, BEC-1, RME-8, and redundant sorting nexins are required for the plasma membrane localization of TAT-5, which is important to maintain PE asymmetry and inhibit MV release. Although we confirmed that PAD-1 and the GEF-like protein MON-2 are required for endosomal recycling, they only traffic TAT-5 in the absence of sorting nexin-mediated recycling. Instead, PAD-1 is specifically required for the lipid flipping activity of TAT-5 that inhibits MV release. Thus, our work pinpoints TAT-5 and PE as key regulators of plasma membrane budding, further supporting the model that PE externalization drives ectocytosis. In addition, we uncovered redundant intracellular trafficking pathways, which affect organelle size and revealed new regulators of TAT-5 flippase activity. These newly identified ectocytosis inhibitors provide a toolkit to test the in vivo roles of MVs. In the long term, our work will help to identify the mechanisms that govern MV budding, furthering our understanding of the mechanisms that regulate disease-mediated EV release, membrane sculpting and viral budding.}, subject = {Caenorhabditis elegans}, language = {en} }