@article{DennerDittmaierHechtetal.2016, author = {Denner, Ansgar and Dittmaier, Stefan and Hecht, Markus and Pasold, Christian}, title = {NLO QCD and electroweak corrections to Z + γ production with leptonic Z-boson decays}, series = {JOURNAL OF HIGH ENERGY PHYSICS}, volume = {02}, journal = {JOURNAL OF HIGH ENERGY PHYSICS}, number = {057}, doi = {10.1007/JHEP02(2016)057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168766}, year = {2016}, abstract = {The next-to-leading-order electroweak corrections to pp→l\(^{+}\)l\(^{-}\)/ν¯¯¯ν+γ+X production, including all off-shell effects of intermediate Z bosons in the complex-mass scheme, are calculated for LHC energies, revealing the typically expected large corrections of tens of percent in the TeV range. Contributions from quark-photon and photon-photon initial states are taken into account as well, but their impact is found to be moderate or small. Moreover, the known next-to-leading-order QCD corrections are reproduced. In order to separate hard photons from jets, both a quark-to-photon fragmentation function {\´a} la Glover/Morgan and Frixione's cone isolation are employed. The calculation is available in the form of Monte Carlo programs allowing for the evaluation of arbitrary differential cross sections. Predictions for integrated cross sections are presented for the LHC at 7 TeV, 8 TeV, and 14 TeV, and differential distributions are discussed at 14 TeV for bare muons and dressed leptons. Finally, we consider the impact of anomalous ZZγ and Zγγ couplings.}, language = {en} } @article{ChiesaGreinerSchoenherretal.2017, author = {Chiesa, Mauro and Greiner, Nicolas and Sch{\"o}nherr, Marek and Tramontano, Francesco}, title = {Electroweak corrections to diphoton plus jets}, series = {Journal of High Energy Physics}, journal = {Journal of High Energy Physics}, number = {10}, doi = {10.1007/JHEP10(2017)181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173512}, year = {2017}, abstract = {We calculate the next-to-leading order electroweak corrections to the production of a photon pair in association with zero, one and two jets at the LHC. We use GoSam and Sherpa to obtain the results in a fully automated way. For a typical set of fiducial cuts the electroweak corrections lead to a modification of the total cross section of up to 3\%, depending on the jet multiplicity. We find substantial contributions in differential distributions, leading to tens of per cent corrections for phase space regions within the reach of the LHC. Furthermore we investigate the importance of photon induced processes as well as subleading contributions. Photon induced processes are found to be negligible, subleading contributions can have a sizeable impact however they can be removed by appropriate phase space cuts.}, language = {en} } @article{DennerLangPellenetal.2017, author = {Denner, Ansgar and Lang, Jean-Nicolas and Pellen, Mathieu and Uccirati, Sandro}, title = {Higgs production in association with off-shell top-antitop pairs at NLO EW and QCD at the LHC}, series = {Journal of High Energy Physics}, journal = {Journal of High Energy Physics}, number = {2}, doi = {10.1007/JHEP02(2017)053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171871}, year = {2017}, abstract = {We present NLO electroweak corrections to Higgs production in association with off-shell top-antitop quark pairs. The full process pp → e +νeµ -ν¯µbb¯H is considered, and hence all interference, off-shell, and non-resonant contributions are taken into account. The electroweak corrections turn out to be below one per cent for the integrated cross section but can exceed 10\% in certain phase-space regions. In addition to its phenomenological relevance, the computation constitutes a major technical achievement as the full NLO virtual corrections involving up to 9-point functions have been computed exactly. The results of the full computation are supported by two calculations in the double-pole approximation. These also allow to infer the effect of off-shell contributions and emphasise their importance especially for the run II of the LHC. Finally, we present combined predictions featuring both NLO electroweak and QCD corrections in a common set-up that will help the experimental collaborations in their quest of precisely measuring the aforementioned process.}, language = {en} } @article{DennerLangUccirati2017, author = {Denner, Ansgar and Lang, Jean-Nicolas and Uccirati, Sandro}, title = {NLO electroweak corrections in extended Higgs sectors with RECOLA2}, series = {Journal of High Energy Physics}, volume = {7}, journal = {Journal of High Energy Physics}, number = {87}, doi = {10.1007/JHEP07(2017)087}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170673}, year = {2017}, abstract = {We present the computer code RECOLA2 along with the first NLO electroweak corrections to Higgs production in vector-boson fusion and updated results for Higgs strahlung in the Two-Higgs-Doublet Model and Higgs-Singlet extension of the Standard Model. A fully automated procedure for the generation of tree-level and one-loop matrix elements in general models, including renormalization, is presented. We discuss the application of the Background-Field Method to the extended models. Numerical results for NLO electroweak cross sections are presented for different renormalization schemes in the Two-Higgs-Doublet Model and the Higgs-Singlet extension of the Standard Model. Finally, we present distributions for the production of a heavy Higgs boson.}, language = {en} } @article{BiedermannDennerPellen2017, author = {Biedermann, Benedikt and Denner, Ansgar and Pellen, Mathieu}, title = {Complete NLO corrections to W\(^{+}\)W\(^{+}\) scattering and its irreducible background at the LHC}, series = {Journal of High Energy Physics}, volume = {10}, journal = {Journal of High Energy Physics}, number = {124}, doi = {10.1007/JHEP10(2017)124}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170157}, year = {2017}, abstract = {The process pp → μ\(^{+}\)ν\(_{μ}\)e\(^{+}\)ν\(_{e}\)jj receives several contributions of different orders in the strong and electroweak coupling constants. Using appropriate event selections, this process is dominated by vector-boson scattering (VBS) and has recently been measured at the LHC. It is thus of prime importance to estimate precisely each contribution. In this article we compute for the first time the full NLO QCD and electroweak corrections to VBS and its irreducible background processes with realistic experimental cuts. We do not rely on approximations but use complete amplitudes involving two different orders at tree level and three different orders at one-loop level. Since we take into account all interferences, at NLO level the corrections to the VBS process and to the QCD-induced irreducible background process contribute at the same orders. Hence the two processes cannot be unambiguously distinguished, and all contributions to the μ\(^{+}\)ν\(_{μ}\)e\(^{+}\)ν\(_{e}\)jj final state should be preferably measured together.}, language = {en} }