@phdthesis{Hu2021, author = {Hu, Xiawei}, title = {Role of claudin-12 in neuronal barriers in painful murine and human neuropathy}, doi = {10.25972/OPUS-20806}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208065}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In peripheral nervous system (PNS), the blood-nerve barrier (BNB) and myelin barrier (MB) are important physiological fences for maintaining the environment for axons, Schwann cells and other associated cells within peripheral nerves. The perineurium surrounding the nerves and endoneurial vessels nourishing the nerves compose the BNB. Schwann cells wrapping around neurons form the MB. Destruction or malfunction of the barriers has been postulated as an initial step in the development of pathologic conditions concerning human peripheral nerves, such as traumatic neuropathy and the disease of chronic inflammatory demyelination polyneuropathy (CIDP). Tight junction proteins (TJPs) are intercellular junctions building the microstructure of barriers. They play a key role in tightly connecting adjacent cells, controlling the passage of ions, water and other molecules via the paracellular pathway, and maintaining the cell polarity. Among the family of TJPs, claudins are the major structural components which form the backbone of TJs. Certain key TJPs [e.g. claudins (claudin-1, -5, -19, occludin, zona occludens (ZO-1)] have been identified in neural barriers and explored for therapeutic targets. The expression of Cldn12 gene has been documented in human/rodent tibial nerves, spinal cord and DRG. However, the role of claudin-12 in PNS is unknown. In the present study, we firstly found a loss of claudin-12 immunoreactivity (IR) in male or postmenopausal female patients with painful CIDP or non-inflammatory polyneuropathy (PNP). Then, we utilized male and female Cldn12-KO mice and the chronic constriction injury (CCI) model. Cldn12 mRNA and IR were reduced in WT mice after nerve injury. Deletion of Cldn12 via general knockout (KO) induced mechanical allodynia at baseline level and after CCI in time-dependent manner in male mice. KO of Cldn12 in males resulted in loss of small axons, perineurial barrier and MB breakdown, as well as TJP complex disruption with claudin-1, -19 and Pmp22 reduction. Moreover, local Cldn12 siRNA application mimicked mechanical allodynia and MB breakdown. In conclusion, claudin-12 deficiency is associated with painful CIDP/non-inflammatory PNP. Claudin-12 is a regulatory TJP crucial for mechanical nociception, perineurial barrier and MB integrity, and proper TJP composition in mice. Therefore, further investigating the functions of claudin-12 and its mechanism is important to prompt the development of new therapeutic approaches for painful neuropathies.}, language = {en} } @article{BenKraiemSauerNorwigetal.2021, author = {Ben-Kraiem, Adel and Sauer, Reine-Solange and Norwig, Carla and Popp, Maria and Bettenhausen, Anna-Lena and Atalla, Mariam Sobhy and Brack, Alexander and Blum, Robert and Doppler, Kathrin and Rittner, Heike Lydia}, title = {Selective blood-nerve barrier leakiness with claudin-1 and vessel-associated macrophage loss in diabetic polyneuropathy}, series = {Journal of Molecular Medicine}, volume = {99}, journal = {Journal of Molecular Medicine}, number = {9}, doi = {10.1007/s00109-021-02091-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265237}, pages = {1237-1250}, year = {2021}, abstract = {Diabetic polyneuropathy (DPN) is the most common complication in diabetes and can be painful in up to 26\% of all diabetic patients. Peripheral nerves are shielded by the blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels. So far, there are conflicting results regarding the role and function of the BNB in the pathophysiology of DPN. In this study, we analyzed the spatiotemporal tight junction protein profile, barrier permeability, and vessel-associated macrophages in Wistar rats with streptozotocin-induced DPN. In these rats, mechanical hypersensitivity developed after 2 weeks and loss of motor function after 8 weeks, while the BNB and the blood-DRG barrier were leakier for small, but not for large molecules after 8 weeks only. The blood-spinal cord barrier remained sealed throughout the observation period. No gross changes in tight junction protein or cytokine expression were observed in all barriers to blood. However, expression of Cldn1 mRNA in perineurium was specifically downregulated in conjunction with weaker vessel-associated macrophage shielding of the BNB. Our results underline the role of specific tight junction proteins and BNB breakdown in DPN maintenance and differentiate DPN from traumatic nerve injury. Targeting claudins and sealing the BNB could stabilize pain and prevent further nerve damage.}, language = {en} }