@article{SemmlerSacconiBachetal.2014, author = {Semmler, Anna-Lena and Sacconi, Sabrina and Bach, J. Elisa and Liebe, Claus and B{\"u}rmann, Jan and Kley, Rudolf A. and Ferbert, Andreas and Anderheiden, Roland and Van den Bergh, Peter and Martin, Jean-Jacques and De Jonghe, Peter and Neuen-Jacob, Eva and M{\"u}ller, Oliver and Deschauer, Marcus and Bergmann, Markus and Schr{\"o}der, J. Michael and Vorgerd, Matthias and Schulz, J{\"o}rg B. and Weis, Joachim and Kress, Wolfram and Claeys, Kristl G.}, title = {Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies}, series = {Orphanet Journal of Rare Diseases}, volume = {9}, journal = {Orphanet Journal of Rare Diseases}, number = {121}, issn = {1750-1172}, doi = {10.1186/s13023-014-0121-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115623}, year = {2014}, abstract = {Background: Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement. Methods: We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms. Results: We identified 14 heterozygous mutations (diagnostic yield of 37\%), among them the novel p. Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p. Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28\% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13\%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29\%). Conclusions: We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of the known genes in less than half of the MFM patients, indicating that more causative genes are still to be found. Next generation sequencing techniques should be helpful in achieving this aim.}, language = {en} } @article{WolfKuonenDandekaretal.2015, author = {Wolf, Beat and Kuonen, Pierre and Dandekar, Thomas and Atlan, David}, title = {DNAseq workflow in a diagnostic context and an example of a user friendly implementation}, series = {BioMed Research International}, journal = {BioMed Research International}, number = {403497}, doi = {10.1155/2015/403497}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144527}, year = {2015}, abstract = {Over recent years next generation sequencing (NGS) technologies evolved from costly tools used by very few, to a much more accessible and economically viable technology. Through this recently gained popularity, its use-cases expanded from research environments into clinical settings. But the technical know-how and infrastructure required to analyze the data remain an obstacle for a wider adoption of this technology, especially in smaller laboratories. We present GensearchNGS, a commercial DNAseq software suite distributed by Phenosystems SA. The focus of GensearchNGS is the optimal usage of already existing infrastructure, while keeping its use simple. This is achieved through the integration of existing tools in a comprehensive software environment, as well as custom algorithms developed with the restrictions of limited infrastructures in mind. This includes the possibility to connect multiple computers to speed up computing intensive parts of the analysis such as sequence alignments. We present a typical DNAseq workflow for NGS data analysis and the approach GensearchNGS takes to implement it. The presented workflow goes from raw data quality control to the final variant report. This includes features such as gene panels and the integration of online databases, like Ensembl for annotations or Cafe Variome for variant sharing.}, language = {en} } @article{SickelAnkenbrandGrimmeretal.2015, author = {Sickel, Wiebke and Ankenbrand, Markus J. and Grimmer, Gudrun and Holzschuh, Andrea and H{\"a}rtel, Stephan and Lanzen, Jonathan and Steffan-Dewenter, Ingolf and Keller, Alexander}, title = {Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach}, series = {BMC Ecology}, volume = {15}, journal = {BMC Ecology}, number = {20}, doi = {10.1186/s12898-015-0051-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125730}, year = {2015}, abstract = {Background Meta-barcoding of mixed pollen samples constitutes a suitable alternative to conventional pollen identification via light microscopy. Current approaches however have limitations in practicability due to low sample throughput and/or inefficient processing methods, e.g. separate steps for amplification and sample indexing. Results We thus developed a new primer-adapter design for high throughput sequencing with the Illumina technology that remedies these issues. It uses a dual-indexing strategy, where sample-specific combinations of forward and reverse identifiers attached to the barcode marker allow high sample throughput with a single sequencing run. It does not require further adapter ligation steps after amplification. We applied this protocol to 384 pollen samples collected by solitary bees and sequenced all samples together on a single Illumina MiSeq v2 flow cell. According to rarefaction curves, 2,000-3,000 high quality reads per sample were sufficient to assess the complete diversity of 95\% of the samples. We were able to detect 650 different plant taxa in total, of which 95\% were classified at the species level. Together with the laboratory protocol, we also present an update of the reference database used by the classifier software, which increases the total number of covered global plant species included in the database from 37,403 to 72,325 (93\% increase). Conclusions This study thus offers improvements for the laboratory and bioinformatical workflow to existing approaches regarding data quantity and quality as well as processing effort and cost-effectiveness. Although only tested for pollen samples, it is furthermore applicable to other research questions requiring plant identification in mixed and challenging samples.}, language = {en} } @article{HornKellerHildebrandtetal.2016, author = {Horn, Hannes and Keller, Alexander and Hildebrandt, Ulrich and K{\"a}mpfer, Peter and Riederer, Markus and Hentschel, Ute}, title = {Draft genome of the \(Arabidopsis\) \(thaliana\) phyllosphere bacterium, \(Williamsia\) sp. ARP1}, series = {Standards in Genomic Sciences}, volume = {11}, journal = {Standards in Genomic Sciences}, number = {8}, doi = {10.1186/s40793-015-0122-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146008}, year = {2016}, abstract = {The Gram-positive actinomycete \(Williamsia\) sp. ARP1 was originally isolated from the \(Arabidopsis\) \(thaliana\) phyllosphere. Here we describe the general physiological features of this microorganism together with the draft genome sequence and annotation. The 4,745,080 bp long genome contains 4434 protein-coding genes and 70 RNA genes. To our knowledge, this is only the second reported genome from the genus \(Williamsia\) and the first sequenced strain from the phyllosphere. The presented genomic information is interpreted in the context of an adaptation to the phyllosphere habitat.}, language = {en} } @article{WeisschuhMayerStrometal.2016, author = {Weisschuh, Nicole and Mayer, Anja K. and Strom, Tim M. and Kohl, Susanne and Gl{\"o}ckle, Nicola and Schubach, Max and Andreasson, Sten and Bernd, Antje and Birch, David G. and Hamel, Christian P. and Heckenlively, John R. and Jacobson, Samuel G. and Kamme, Christina and Kellner, Ulrich and Kunstmann, Erdmute and Maffei, Pietro and Reiff, Charlotte M. and Rohrschneider, Klaus and Rosenberg, Thomas and Rudolph, G{\"u}nther and V{\´a}mos, Rita and Vars{\´a}nyi, Bal{\´a}zs and Weleber, Richard G. and Wissinger, Bernd}, title = {Mutation Detection in Patients with Retinal Dystrophies Using Targeted Next Generation Sequencing}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0145951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167398}, pages = {e0145951}, year = {2016}, abstract = {Retinal dystrophies (RD) constitute a group of blinding diseases that are characterized by clinical variability and pronounced genetic heterogeneity. The different nonsyndromic and syndromic forms of RD can be attributed to mutations in more than 200 genes. Consequently, next generation sequencing (NGS) technologies are among the most promising approaches to identify mutations in RD. We screened a large cohort of patients comprising 89 independent cases and families with various subforms of RD applying different NGS platforms. While mutation screening in 50 cases was performed using a RD gene capture panel, 47 cases were analyzed using whole exome sequencing. One family was analyzed using whole genome sequencing. A detection rate of 61\% was achieved including mutations in 34 known and two novel RD genes. A total of 69 distinct mutations were identified, including 39 novel mutations. Notably, genetic findings in several families were not consistent with the initial clinical diagnosis. Clinical reassessment resulted in refinement of the clinical diagnosis in some of these families and confirmed the broad clinical spectrum associated with mutations in RD genes.}, language = {en} } @phdthesis{Pahlavan2019, author = {Pahlavan, Pirasteh}, title = {Integrated Systems Biology Analysis; Exemplified on Potyvirus and Geminivirus interaction with \(Nicotiana\) \(benthamiana\)}, doi = {10.25972/OPUS-15341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153412}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Viral infections induce a significant impact on various functional categories of biological processes in the host. The understanding of this complex modification of the infected host immune system requires a global and detailed overview on the infection process. Therefore it is essential to apply a powerful approach which identifies the involved components conferring the capacity to recognize and respond to specific pathogens, which in general are defeated in so-called compatible virus-plant infections. Comparative and integrated systems biology of plant-virus interaction progression may open a novel framework for a systemic picture on the modulation of plant immunity during different infections and understanding pathogenesis mechanisms. In this thesis these approaches were applied to study plant-virus infections during two main viral pathogens of cassava: Cassava brown streak virus and African cassava mosaic virus. Here, the infection process was reconstructed by a combination of omics data-based analyses and metabolic network modelling, to understand the major metabolic pathways and elements underlying viral infection responses in different time series, as well as the flux activity distribution to gain more insights into the metabolic flow and mechanism of regulation; this resulted in simultaneous investigations on a broad spectrum of changes in several levels including the gene expression, primary metabolites, and enzymatic flux associated with the characteristic disease development process induced in Nicotiana benthamiana plants due to infection with CBSV or ACMV. Firstly, the transcriptome dynamics of the infected plant was analysed by using mRNA-sequencing, in order to investigate the differential expression profile according the symptom developmental stage. The spreading pattern and different levels of biological functions of these genes were analysed associated with the infection stage and virus entity. A next step was the Real-Time expression modification of selected key pathway genes followed by their linear regression model. Subsequently, the functional loss of regulatory genes which trigger R-mediated resistance was observed. Substantial differences were observed between infected mutants/transgenic lines and wild-types and characterized in detail. In addition, we detected a massive localized accumulation of ROS and quantified the scavenging genes expression in the infected wild-type plants relative to mock infected controls. Moreover, we found coordinated regulated metabolites in response to viral infection measured by using LC-MS/MS and HPLC-UV-MS. This includes the profile of the phytohormones, carbohydrates, amino acids, and phenolics at different time points of infection with the RNA and DNA viruses. This was influenced by differentially regulated enzymatic activities along the salicylate, jasmonate, and chorismate biosynthesis, glycolysis, tricarboxylic acid cycle, and pentose phosphate pathways, as well as photosynthesis, photorespiration, transporting, amino acid and fatty acid biosynthesis. We calculated the flux redistribution considering a gradient of modulation for enzymes along different infection stages, ranging from pre-symptoms towards infection stability. Collectively, our reverse-engineering study consisting of the generation of experimental data and modelling supports the general insight with comparative and integrated systems biology into a model plant-virus interaction system. We refine the cross talk between transcriptome modification, metabolites modulation and enzymatic flux redistribution during compatible infection progression. The results highlight the global alteration in a susceptible host, correlation between symptoms severity and the alteration level. In addition we identify the detailed corresponding general and specific responses to RNA and DNA viruses at different stages of infection. To sum up, all the findings in this study strengthen the necessity of considering the timing of treatment, which greatly affects plant defence against viral infection, and might result in more efficient or combined targeting of a wider range of plant pathogens.}, language = {en} } @article{FuxArndtLangenmayeretal.2019, author = {Fux, Robert and Arndt, Daniela and Langenmayer, Martin C. and Schwaiger, Julia and Ferling, Hermann and Fischer, Nicole and Indenbirken, Daniela and Grundhoff, Adam and D{\"o}lken, Lars and Adamek, Mikolaj and Steinhagen, Dieter and Sutter, Gerd}, title = {Piscine orthoreovirus 3 is not the causative pathogen of proliferative darkening syndrome (PDS) of brown trout (Salmo trutta fario)}, series = {Viruses}, volume = {11}, journal = {Viruses}, number = {2}, issn = {1999-4915}, doi = {10.3390/v11020112}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196991}, year = {2019}, abstract = {The proliferative darkening syndrome (PDS) is a lethal disease of brown trout (Salmo trutta fario) which occurs in several alpine Bavarian limestone rivers. Because mortality can reach 100\%, PDS is a serious threat for affected fish populations. Recently, Kuehn and colleagues reported that a high throughput RNA sequencing approach identified a piscine orthoreovirus (PRV) as a causative agent of PDS. We investigated samples from PDS-affected fish obtained from two exposure experiments performed at the river Iller in 2008 and 2009. Using a RT-qPCR and a well-established next-generation RNA sequencing pipeline for pathogen detection, PRV-specific RNA was not detectable in PDS fish from 2009. In contrast, PRV RNA was readily detectable in several organs from diseased fish in 2008. However, similar virus loads were detectable in the control fish which were not exposed to Iller water and did not show any signs of the disease. Therefore, we conclude that PRV is not the causative agent of PDS of brown trout in the rhithral region of alpine Bavarian limestone rivers. The abovementioned study by Kuehn used only samples from the exposure experiment from 2008 and detected a subclinical PRV bystander infection. Work is ongoing to identify the causative agent of PDS.}, language = {en} } @phdthesis{Terhoeven2020, author = {Terhoeven, Niklas}, title = {Genomics of carnivorous Droseraceae and Transcriptomics of Tobacco pollination as case studies for neofunctionalisation of plant defence mechanisms}, doi = {10.25972/OPUS-18971}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189712}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Plants have evolved many mechanisms to defend against herbivores and pathogens. In many cases, these mechanisms took other duties. One example of such a neofunction- alisation would be carnivory. Carnivory evolved from the defence against herbivores. Instead of repelling the predator with a bitter taste, the plant kills it and absorbs its nutrients. A second example can be found in the pollination process. Many of the genes involved here were originally part of defence mechanisms against pathogens. In this thesis, I study these two examples on a genomic and transcriptomic level. The first project, Genomics of carnivorous Droseraceae, aims at obtaining annotated genome sequences of three carnivorous plants. I assembled the genome of Aldrovanda vesiculosa, annotated those of A. vesiculosa, Drosera spatulata and Dionaea muscipula and com- pared their genomic contents. Because of the high repetitiveness of the D. muscipula genome, I also developed reper, an assembly free method for detection, classification and quantification of repeats. With that method, we were able to study the repeats without the need of incorporating them into a genome assembly. The second large project investigates the role of DEFL (defensin-like) genes in pollen tube guidance in tobacco flowers. We sequenced the transcriptome of the SR1 strain in different stages of the pollination process. I assembled and annotated the transcriptome and searched for differentially expressed genes. We also used a method based on Hidden- Markov-Models (HMM) to find DEFLs, which I then analysed regarding their expression during the different stages of fertilisation. In total, this thesis results in annotated genome assemblies of three carnivorous Droser- aceae, which are used as a foundation for various analyses investigating the roots of car- nivory, insights into the role of DEFLs on a transcriptomic level in tobacco pollination and a new method for repeat identification in complex genomes.}, subject = {Droseraceae}, language = {en} } @phdthesis{Kolokotronis2021, author = {Kolokotronis, Konstantinos}, title = {Genetische Ursachen heredit{\"a}rer Herzerkrankungen}, doi = {10.25972/OPUS-23116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231164}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Heredit{\"a}re Kardiomyopathien sind durch klinische und genetische Heterogenit{\"a}t gekennzeichnet, welche die Kardiogenetik vor Herausforderungen stellt. In dieser Arbeit wurden manche dieser Herausforderungen angegangen, indem anhand einer Kohorte von 61 Patienten mit Kardiomyopathie bzw. prim{\"a}rer Arrhythmie eine Exom-Diagnostik mit anschließender stufenweiser Datenanalyse vorgenommen wurde. Ein Ziel der Arbeit war, die aktuellen diagnostischen Detektionsraten zu pr{\"u}fen sowie zu bewerten, ob eine erweiterte Exom-Diagnostik im Vergleich zur {\"u}blichen Genpanel-Analyse einen diagnostischen Zugewinn bringt. Zudem sollten potenzielle Krankheitsgene sowie komplexe Genotypen identifiziert werden. Die Ergebnisse zeigten, dass bei insgesamt 64\% der Patienten eine Variante von Interesse gefunden wurde. Hervorzuheben ist die hohe Detektionsrate in der gr{\"o}ßten Subkohorte, die aus Patienten mit dilatativer bzw. linksventrikul{\"a}rer Non-Compaction Kardiomyopathie bestand: 69\% und damit h{\"o}her im Vergleich zur in der Literatur berichteten Detektionsrate von bis zu 50\%. Im Rahmen der stufenweisen Daten-Auswertung zeigte sich zwar, dass die meisten kausalen Varianten in den ph{\"a}notypspezifischen Panels zu finden waren, die Analyse eines erweiterten Panels mit 79 Genen sowie der Gesamtexom-Daten aber zu einer zus{\"a}tzlichen Aufkl{\"a}rungsquote von 13\% bzw. 5\% f{\"u}hrte. Durch die Erweiterung der Diagnostik konnten interessante, teilweise neue Assoziationen zwischen Genotyp und Ph{\"a}notyp sowie neue Kandidatengene identifiziert werden. Das beste Beispiel daf{\"u}r ist eine trunkierende Variante im STK38-Gen, das an der Phosphorylierung eines Regulators der Expression kardialer Gene beteiligt ist. Zusammenfassend konnte gezeigt werden, dass, obwohl die Detektionsrate von Genpanels f{\"u}r die Routine-Diagnostik akzeptabel ist, die Anwendung von Exom-Diagnostik einen diagnostischen Zugewinn, die Entdeckung von interessanten Genotyp-Ph{\"a}notyp-Korrelationen sowie die Identifizierung von Kandidatengenen erm{\"o}glicht.}, subject = {Herzmuskelkrankheit}, language = {de} } @article{SchuemannGrossBaueretal.2021, author = {Sch{\"u}mann, Franziska Lea and Groß, Elisabeth and Bauer, Marcus and Rohde, Christian and Sandmann, Sarah and Terziev, Denis and M{\"u}ller, Lutz P. and Posern, Guido and Wienke, Andreas and Fend, Falko and Hansmann, Martin-Leo and Klapper, Wolfram and Rosenwald, Andreas and Stein, Harald and Dugas, Martin and M{\"u}ller-Tidow, Carsten and Wickenhauser, Claudia and Binder, Mascha and Weber, Thomas}, title = {Divergent effects of EZH1 and EZH2 protein expression on the prognosis of patients with T-cell lymphomas}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {12}, issn = {2227-9059}, doi = {10.3390/biomedicines9121842}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252155}, year = {2021}, abstract = {T-cell lymphomas are highly heterogeneous and their prognosis is poor under the currently available therapies. Enhancers of zeste homologue 1 and 2 (EZH1/2) are histone H3 lysine-27 trimethyltransferases (H3K27me3). Despite the rapid development of new drugs inhibiting EZH2 and/or EZH1, the molecular interplay of these proteins and the impact on disease progression and prognosis of patients with T-cell lymphomas remains insufficiently understood. In this study, EZH1/2 mutation status was evaluated in 33 monomorphic epitheliotropic intestinal T-cell lymphomas by next generation sequencing and EZH1/2 and H3K27me3 protein expression levels were detected by immunohistochemistry in 46 T-cell lymphomas. Correlations with clinicopathologic features were analyzed and survival curves generated. No EZH1 mutations and one (3\%) EZH2 missense mutation were identified. In univariable analysis, high EZH1 expression was associated with an improved overall survival (OS) and progression-free survival (PFS) whereas high EZH2 and H3K27me3 expression were associated with poorer OS and PFS. Multivariable analysis revealed EZH1 (hazard ratio (HR) = 0.183; 95\% confidence interval (CI): 0.044-0.767; p = 0.020;) and EZH2 (HR = 8.245; 95\% CI: 1.898-35.826; p = 0.005) to be independent, divergent prognostic markers for OS. In conclusion, EZH1/2 protein expression had opposing effects on the prognosis of T-cell lymphoma patients.}, language = {en} }