@phdthesis{Sauer2000, author = {Sauer, Christina}, title = {Charakterisierung intrazellul{\"a}rer, bakterieller Endosymbionten im Mitteldarm von Ameisen der Gattung Camponotus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1940}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {In der vorliegenden Dissertation wurden verschiedene Themenbereiche bearbeitet, die zur Charakterisierung der intrazellul{\"a}ren, bakteriellen Endosymbionten im Mitteldarm von Ameisen der Gattung Camponotus beitrugen. Es wurden phylogenetische Untersuchungen mit Hilfe der 16S rDNA-Sequenzen der Symbionten und der Sequenzen der Cytochrom-Oxidase-Untereinheit I (COI-Sequenzen) ihrer Wirte durchgef{\"u}hrt, die zur n{\"a}heren Kl{\"a}rung der Fragen zu {\"U}bertragungsweg und Stellung der Camponotus-Endosymbionten verhalfen. Untersuchungen an dreizehn verschiedenen Camponotus-Arten brachten folgende Ergebnisse. Die intrazellul{\"a}ren Bakterien der Ameisen geh{\"o}ren zur g-Subklasse der Proteobakterien. Innerhalb des 16S-Stammbaumes der Symbionten kann man drei Untergruppen unterscheiden, in denen die einzelnen Arten enger miteinander verwandt sind. Bei den n{\"a}chstverwandten Bakteriennachbarn der Camponotus-Endosymbionten handelt es sich um die ebenfalls symbiontisch lebenden Bakterien der Gattungen Wigglesworthia und Buchnera. Die Ameisen-Symbionten besitzen in ihren rrs-Genen intervenierende DNA-Sequenzen (IVS), die stabile Sekund{\"a}rstrukturen ausbilden k{\"o}nnen. Ihre 16S-Gene sind nicht strangaufw{\"a}rts von den 23S-Genen lokalisiert. Durch diese genetische Besonderheit {\"a}hneln die Camponotus-Symbionten den Buchnera-Symbionten, deren rRNA-Gene auf zwei Transkriptionseinheiten verteilt sind. Innerhalb des Stammbaumes der untersuchten Wirtsameisen existieren ebenfalls drei Untergruppen, deren einzelne Arten enger miteinander verwandt sind. Die direkte Gegen{\"u}berstellung des Symbionten-Stammbaumes mit dem der Ameisen zeigt ein weitgehend gleiches Verzweigungsmuster. Beide Dendrogramme zeigen signifikante {\"U}bereinstimmungen bez{\"u}glich ihrer taxonomischen Beziehungen und legen eine kongruente Entwicklung von Symbionten und Wirten, die nur durch einen vertikalen {\"U}bertragungsweg erzeugt werden kann, nahe. Einzige Ausnahme bildete hierbei der C. castaneus-Symbiont, bei dem ein horizontaler Transfer von Symbionten nicht g{\"a}nzlich ausgeschlossen werden kann. Die im Rahmen dieser Dissertation durchgef{\"u}hrten phylogenetischen Untersuchungen erm{\"o}glichten die Benennung einer neuen Symbiontengattung innerhalb der gamma-Subgruppe der Proteobakterien: "Candidatus Blochmannia spp." Histologische Studien der Endosymbiose mit Hilfe von licht- und elektronenmikroskopischen Methoden sollten Fragen zur Symbiontenlokalisation innerhalb adulter Individuen beantworten und die Ergebnisse zum {\"U}bertragungsweg der intrazellul{\"a}ren Bakterien festigen. Die Endosymbionten sind in den Mitteldarmepithelien von Arbeiterinnen, K{\"o}niginnen und M{\"a}nnchen in Myzetozytenzellen lokalisiert, die in das Mitteldarmepithel interkalieren. Diese spezialisierten Zellen besitzen kaum Vesikel und tragen keinen Mikrovillisaum. In den Oozyten der Ovarien von K{\"o}niginnen und Arbeiterinnen wurden ebenfalls große Symbiontenmengen gefunden. Die Spermatheka der K{\"o}niginnen und die Geschlechtsorgane der M{\"a}nnchen waren symbiontenfrei. Die Abwesenheit von Symbionten innerhalb dieser beiden Organe zeigt, dass eine Bakterieninfektion der weiblichen Tiere nicht durch die M{\"a}nnchen stattfindet, sondern wie schon in den phylogenetischen Untersuchungen postuliert, ein rein maternaler {\"U}bertragungsweg der Symbionten vorliegt. Die Detektion der Bakterien in Eiern und Larven der Ameisen mittels In situ-Hybridisierungen trugen zur Aufkl{\"a}rung des Weges der Endosymbionten w{\"a}hrend der Embryogenese bei. W{\"a}hrend sich im abgelegten Ei ein Ring aus Symbionten bildete, kam es in den Larvenstadien 1 bis 3 zur Auswanderung der Bakterien in Meso- bzw. Ektoderm. Im gr{\"o}ßten untersuchten Larvenstadium 4, das kurz vor der Verpuppung stand, konnten die Symbionten ausschließlich in den Myzetozyten des Mitteldarmes detektiert werden. Die Behandlung der Ameisen mit Antibiotika erm{\"o}glichte es, symbiontenfreie Ameisen zu erzeugen, die {\"u}ber einen l{\"a}ngeren Zeitraum weiterlebten, ohne ihre Symbionten zu regenerieren. Im Rahmen dieser Arbeit gelang es erstmals, die intrazellul{\"a}ren Bakterien intakt aus dem sie umgebenden Mitteldarmgewebe zu isolieren. Somit konnten gereinigte Symbionten f{\"u}r Kultivierungs- und Infektionsversuche verwendet werden. Diese Versuche die mit Hilfe von Bakterienn{\"a}hrmedien und Insektenzelllinien durchgef{\"u}hrt wurden, zeigten jedoch sehr deutlich, dass es nicht m{\"o}glich ist, die Camponotus-Symbionten außerhalb ihrer Wirte zu kultivieren.}, subject = {Rossameise}, language = {de} } @phdthesis{Stoll2009, author = {Stoll, Sascha}, title = {Funktionelle Analyse von Blochmannia floridanus, dem prim{\"a}ren Endosymbionten der Rossameise Camponotus floridanus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37238}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Ameisen der Gattung Camponotus beherbergen bakterielle Symbionten der Gattung Blochmannia in spezialisierten Zellen des Mitteldarms (Blochmann, 1882; Buchner, 1965; Sauer, 2000; Schr{\"o}der et al., 1996). Die Genomsequenzierung dieser Symbionten zeigte, dass Blochmannia, {\"a}hnlich den Symbionten von Blattl{\"a}usen, haupts{\"a}chlich Gene der Aminos{\"a}urebiosynthese beibehalten hat (Degnan et al., 2005; Gil et al., 2003). Die Relevanz dieser nahrungsaufwertenden Funktion konnte experimentell best{\"a}tigt werden (Feldhaar et al., 2007). Ein Schwerpunkt der vorliegenden Arbeit war die Aufkl{\"a}rung der dynamischen Interaktion der beiden Partner w{\"a}hrend des komplexen Lebenszyklus des holometabolen Wirtes. Fr{\"u}here Studien deuteten darauf hin, dass die Symbiose vor allem w{\"a}hrend der Larven- und Puppenphasen von Bedeutung sein k{\"o}nnte (Feldhaar et al., 2007; Wolschin et al., 2004; Zientz et al., 2006). Mit fluoreszenter in situ Hybridisierung (FISH) und konfokaler Laserscanning Mikroskopie konnte in der vorliegenden Arbeit die Lokalisierung von B. floridanus w{\"a}hrend der wichtigsten Entwicklungsstadien aufgekl{\"a}rt werden. Hierbei konnte gezeigt werden, dass die Symbionten schon im ersten Larvenstadium in spezialisierten Zellen um den Darm angeordnet sind, aber in sp{\"a}teren Stadien nicht, wie bisher angenommen, auf diese Bakteriozyten beschr{\"a}nkt sind, sondern bis zum Schlupf der jungen Arbeiterinnen massiv andere Darmzellen infizieren. {\"U}bereinstimmend mit Bestimmungen der Zellzahl in den verschiedenen Wirtsstadien ist die Anzahl der Symbionten gegen Ende der Metamorphose am h{\"o}chsten. Die Symbiose degeneriert in sehr alten Arbeiterinnen, gut gef{\"u}llte Bakteriozyten werden jedoch noch monatelang beibehalten. Mit Macroarray- und qRT- PCR- basierten Transkriptomanalysen wurde die Expression der bakteriellen Gene in charakteristischen Entwicklungsstadien des Wirtes untersucht. Allgemein zeigen vor allem Gene f{\"u}r molekulare Chaperons und bestimmte bakterielle Grundfunktionen eine hohe Expression. Aber auch viele Gene, die m{\"o}glicherweise wichtige Funktionen in der Symbiose besitzen, wie die Biosynthese essentieller Aminos{\"a}uren und das Recycling von Stickstoffverbindungen, zeigen ein hohes absolutes Transkriptlevel. Zudem besteht eine positive Korrelation zwischen dem Expressionsniveau und dem GC- Gehalt der Gene, die in dem h{\"o}heren Selektionsdruck und damit einer geringeren Mutationsrate der essentiellen Gene begr{\"u}ndet liegt (Schaber et al., 2005). Durch Proteinanalysen konnte best{\"a}tigt werden, dass die Faktoren mit der h{\"o}chsten absoluten Transkription die dominanten Proteine der Symbionten darstellen. In den unterschiedlichen Entwicklungsstadien zeigen viele Gene eine deutliche Dynamik, deren Ausmaß aber, verglichen mit freilebenden Bakterien, gering ist. Aus den Expressionsprofilen aufeinanderfolgender Gene lassen sich m{\"o}gliche Transkriptionseinheiten ableiten, die teilweise auch experimentell best{\"a}tigt wurden. Oftmals zeigen auch Gene, die nicht in Transkriptionseinheiten angeordnet sind, aber verwandten Stoffwechselwegen angeh{\"o}ren, {\"a}hnliche Muster. Dies deutet auf das Vorhandensein grundlegender Genregulations-mechanismen hin, obwohl im Genom von B. floridanus nur noch sehr wenige Transkriptionsfaktoren codiert sind (Gil et al., 2003). Auf {\"u}bergeordneter Ebene zeigt sich, dass bei Symbionten aus sp{\"a}ten Puppenstadien viele symbioserelevante Gene im Vergleich zu Genen des Grundmetabolismus eine erh{\"o}hte Expression zeigen. Dies betrifft besonders die Biosynthese aromatischer und verzweigter Aminos{\"a}uren, die in diesen Stadien vom Wirt in hoher Menge ben{\"o}tigt werden, w{\"a}hrend die internen Reserven gleichzeitig zur Neige gehen. Dies {\"a}ußert sich auch im deutlichen Abfallen der Speicherproteinmenge des Wirts gegen Ende der Puppenphase. Die festgestellte Ver{\"a}nderung der Symbiontenzahl {\"u}bertrifft das geringe Ausmaß der Genregulation um ein Vielfaches. Die Bakterien liegen in jedem Stadium polyploid mit bis zu 100 Genomkopien vor, dieser Polyploidiegrad bleibt jedoch w{\"a}hrend der gesamten Wirtsentwicklung weitestgehend konstant. Somit scheint die Kontrolle des Wirts {\"u}ber die bakterielle Vermehrung der entscheidende Faktor dieser Symbiose zu sein. Die verbleibenden regulatorischen F{\"a}higkeiten der Bakterien stellen m{\"o}glicherweise eine Feinjustierung von optimierten Produktionseinheiten dar, deren Anzahl nach den Bed{\"u}rfnissen des Wirtes ver{\"a}ndert wird. Insgesamt konnten in der vorliegenden Arbeit neue Einblicke in das komplexe Zusammenleben von Blochmannia und Camponotus gewonnen werden, die zu einem besseren Verst{\"a}ndnis der biologischen Funktion und der grundlegenden Mechanismen dieser Symbiose f{\"u}hren. Eine der wichtigsten Fragestellungen nach dem Sinn einer nahrungsaufwertenden Symbiose f{\"u}r einen Nahrungsgeneralisten konnte mit starken Hinweisen auf eine stadienabh{\"a}ngige Relevanz der Symbiose beantwortet werden, die den enormen evolution{\"a}ren Erfolg dieser Ameisengattung erkl{\"a}ren k{\"o}nnte.\&\#8195;}, subject = {Intrazellul{\"a}re Symbiose}, language = {de} } @phdthesis{Ratzka2012, author = {Ratzka, Carolin}, title = {Immune responses of the ant Camponotus floridanus towards pathogens and its obligate mutualistic endosymbiont Blochmannia floridanus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69350}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Ants of the species Camponotus floridanus live in huge colonies composed of genetically identical or closely related animals, which should predispose them to an increased vulnerability towards infection by pathogens (Cremer et al. 2007). Therefore the question is how ants (or social insects in general) can nevertheless efficiently combat infections. In order to investigate the immune response of the ant C. floridanus, the present study initially focused on the identification of possible immune factors, encoded by the ant´s genome. By using the method "suppression subtractive hybridization" as well as by Illumnia sequencing technology, several immune-related genes could be identified. Among these were genes encoding proteins involved in pathogen recognition, signal transduction, antimicrobial activity, or general stress response. In accordance with the ant´s genome sequence (Bonasio et al. 2010), only three antimicrobial peptide (AMP) genes could be identified in C. floridanus. The gene and cDNA sequences of these AMPs were established and their expression was shown to be induced by microbial challenge. Two different defensin genes (type 1 and 2) were characterized. A detailed characterization of the mRNA and gene sequence of the other AMP, a hymenoptaecin, revealed a special repeat structure. The C. floridanus hymenoptaecin has a signal and a pro-sequence followed by a hymenoptaecin-like domain and six directly repeated hymenoptaecin domains (HDs). Since each HD is flanked by two known processing sites, proteolytic processing of the precursor protein may generate several mature AMPs. Bioinformatical analyses revealed the presence of hymenoptaecin genes with similar multipeptide precursor structure in genomes of other ant species suggesting an evolutionary conserved important role of this gene in ant immunity. C. floridanus ants harbor the obligate intracellular bacterium, Blochmannia floridanus, in specialized cells (so-called bacteriocytes), which are intercalated between midgut cells as well as in ovaries of females (Blochmann 1882; Sauer et al. 2002; Schr{\"o}der et al. 1996). Ant hosts face the problem that on the one hand they have to maintain the beneficial symbiotic bacteria and on the other hand they need to raise an immune response against harmful pathogenic bacteria during an infection. It was investigated, if endosymbionts are actually detected by the host immune system. Injection of B. floridanus induced an immune response of its host C. floridanus, which was comparable to the one towards pathogens. This means that, despite the evolutionary established cooperation of the endosymbionts and their hosts, these bacteria are still recognized as „non-self" by the host immune system. This finding led to the question, if the ant immune system might be involved in regulation of the endosymbiont number in the midgut tissue in order to avoid their uncontrolled replication. During the holometabolous life cycle of the ant hosts the distribution of bacteriocytes and of Blochmannia endosymbionts is remarkably dynamic and peaks in late pupal stages, in which the entire midgut is transformed into a symbiotic organ (Stoll et al. 2010). It was hypothesized that hosts could regulate the number of endosymbionts present in their tissues via the innate immune system. A quantitative gene expression analysis of assumed symbiosis-relevant candidate genes revealed distinct expression patterns of some genes according to developmental stage and tissue. Moreover, the immune gene expression in response to bacterial challenge was investigated in the pupal stage. By an artificial immune-challenge of pupae it was confirmed that in fact the immune response of the endosymbiont-bearing midgut tissue differs from that of other body parts. The data support a key role for amidase peptidoglycan recognition proteins (PGRPs), especially PGRP-LB, in endosymbiont tolerance and suggest an involvement of the lysosomal system in control of Blochmannia endosymbionts. In sum, this thesis provides a first description of the immune response of the ant C. floridanus. A comprehensive set of immune-relevant genes was determined. Especially, the identification and molecular characterization of the hymenoptaecin gene delivered new insights into the immune competence of ants in general. Moreover, first indications could be gathered for the involvement of the immune system in controlling the endosymbiont B. floridanus.}, subject = {Humorale Immunit{\"a}t}, language = {en} }