@article{AlbertSpaetheGruebeletal.2014, author = {Albert, Štefan and Spaethe, Johannes and Gr{\"u}bel, Kornelia and R{\"o}ssler, Wolfgang}, title = {Royal jelly-like protein localization reveals differences in hypopharyngeal glands buildup and conserved expression pattern in brains of bumblebees and honeybees}, doi = {10.1242/bio.20147211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112733}, year = {2014}, abstract = {Royal jelly proteins (MRJPs) of the honeybee bear several open questions. One of them is their expression in tissues other than the hypopharyngeal glands (HGs), the site of royal jelly production. The sole MRJP-like gene of the bumblebee, Bombus terrestris (BtRJPL), represents a pre-diversification stage of the MRJP gene evolution in bees. Here we investigate the expression of BtRJPL in the HGs and the brain of bumblebees. Comparison of the HGs of bumblebees and honeybees revealed striking differences in their morphology with respect to sex- and caste-specific appearance, number of cells per acinus, and filamentous actin (F-actin) rings. At the cellular level, we found a temporary F-actin-covered meshwork in the secretory cells, which suggests a role for actin in the biogenesis of the end apparatus in HGs. Using immunohistochemical localization, we show that BtRJPL is expressed in the bumblebee brain, predominantly in the Kenyon cells of the mushroom bodies, the site of sensory integration in insects, and in the optic lobes. Our data suggest that a dual glandbrain function preceded the multiplication of MRJPs in the honeybee lineage. In the course of the honeybee evolution, HGs dramatically changed their morphology in order to serve a food-producing function.}, language = {en} } @article{KleberChenMichelsetal.2016, author = {Kleber, J{\"o}rg and Chen, Yi-Chun and Michels, Birgit and Saumweber, Timo and Schleyer, Michael and K{\"a}hne, Thilo and Buchner, Erich and Gerber, Bertram}, title = {Synapsin is required to "boost" memory strength for highly salient events}, series = {Learning and Memory}, volume = {23}, journal = {Learning and Memory}, number = {1}, doi = {10.1101/lm.039685.115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191440}, pages = {9-20}, year = {2016}, abstract = {Synapsin is an evolutionarily conserved presynaptic phosphoprotein. It is encoded by only one gene in the Drosophila genome and is expressed throughout the nervous system. It regulates the balance between reserve and releasable vesicles, is required to maintain transmission upon heavy demand, and is essential for proper memory function at the behavioral level. Task-relevant sensorimotor functions, however, remain intact in the absence of Synapsin. Using an odor-sugar reward associative learning paradigm in larval Drosophila, we show that memory scores in mutants lacking Synapsin (syn\(^{97}\)) are lower than in wild-type animals only when more salient, higher concentrations of odor or of the sugar reward are used. Furthermore, we show that Synapsin is selectively required for larval short-term memory. Thus, without Synapsin Drosophila larvae can learn and remember, but Synapsin is required to form memories that match in strength to event salience-in particular to a high saliency of odors, of rewards, or the salient recency of an event. We further show that the residual memory scores upon a lack of Synapsin are not further decreased by an additional lack of the Sap47 protein. In combination with mass spectrometry data showing an up-regulated phosphorylation of Synapsin in the larval nervous system upon a lack of Sap47, this is suggestive of a functional interdependence of Synapsin and Sap47.}, language = {en} } @article{GrohRoessler2020, author = {Groh, Claudia and R{\"o}ssler, Wolfgang}, title = {Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee}, series = {Insects}, volume = {11}, journal = {Insects}, number = {1}, issn = {2075-4450}, doi = {10.3390/insects11010043}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200774}, year = {2020}, abstract = {Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect.}, language = {en} }