@phdthesis{Balzer2018, author = {Balzer, Christian}, title = {Adsorption-Induced Deformation of Nanoporous Materials — in-situ Dilatometry and Modeling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157145}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The goal of this work is to improve the understanding of adsorption-induced deformation in nanoporous (and in particular microporous) materials in order to explore its potential for material characterization and provide guidelines for related technical applications such as adsorption-driven actuation. For this purpose this work combines in-situ dilatometry measurements with in-depth modeling of the obtained adsorption-induced strains. A major advantage with respect to previous studies is the combination of the dilatometric setup and a commercial sorption instrument resulting in high quality adsorption and strain isotherms. The considered model materials are (activated and thermally annealed) carbon xerogels, a sintered silica aerogel, a sintered hierarchical structured porous silica and binderless zeolites of type LTA and FAU; this selection covers micro-, meso- and macroporous as well as ordered and disordered model materials. All sample materials were characterized by scanning electron microscopy, gas adsorption and sound velocity measurements. In-situ dilatometry measurements on mesoporous model materials were performed for the adsorption of N2 at 77 K, while microporous model materials were also investigated for CO2 adsorption at 273 K, Ar adsorption at 77 K and H2O adsorption at 298 K. Within this work the available in-situ dilatometry setup was revised to improve resolution and reproducibility of measurements of small strains at low relative pressures, which are of particular relevance for microporous materials. The obtained experimental adsorption and strain isotherms of the hierarchical structured porous silica and a micro-macroporous carbon xerogel were quantitatively analyzed based on the adsorption stress model; this approach, originally proposed by Ravikovitch and Neimark, was extended for anisotropic pore geometries within this work. While the adsorption in silica mesopores could be well described by the classical and analytical theory of Derjaguin, Broekhoff and de Boer, the adsorption in carbon micropores required for comprehensive nonlocal density functional theory calculations. To connect adsorption-induced stresses and strains, furthermore mechanical models for the respective model materials were derived. The resulting theoretical framework of adsorption, adsorption stress and mechanical model was applied to the experimental data yielding structural and mechanical information about the model materials investigated, i.e., pore size or pore size distribution, respectively, and mechanical moduli of the porous matrix and the nonporous solid skeleton. The derived structural and mechanical properties of the model materials were found to be consistent with independent measurements and/or literature values. Noteworthy, the proposed extension of the adsorption stress model proved to be crucial for the correct description of the experimental data. Furthermore, it could be shown that the adsorption-induced deformation of disordered mesoporous aero-/xerogel structures follows qualitatively the same mechanisms obtained for the ordered hierarchical structured porous silica. However, respective quantitative modeling proved to be challenging due to the ill-shaped pore geometry of aero-/xerogels; good agreement between model and experiment could only be achieved for the filled pore regime of the adsorption isotherm and the relative pressure range of monolayer formation. In the intermediate regime of multilayer formation a more complex model than the one proposed here is required to correctly describe stress related to the curved adsorbate-adsorptive interface. Notably, for micro-mesoporous carbon xerogels it could be shown that micro- and mesopore related strain mechanisms superimpose one another. The strain isotherms of the zeolites were only qualitatively evaluated. The result for the FAU type zeolite is in good agreement with other experiments reported in literature and the theoretical understanding derived from the adsorption stress model. On the contrary, the strain isotherm of the LTA type zeolite is rather exceptional as it shows monotonic expansion over the whole relative pressure range. Qualitatively this type of strain isotherm can also be explained by the adsorption stress model, but a respective quantitative analysis is beyond the scope of this work. In summary, the analysis of the model materials' adsorption-induced strains proved to be a suitable tool to obtain information on their structural and mechanical properties including the stiffness of the nonporous solid skeleton. Investigations on the carbon xerogels modified by activation and thermal annealing revealed that adsorption-induced deformation is particularly suited to analyze even small changes of carbon micropore structures.}, subject = {Nanopor{\"o}ser Stoff}, language = {en} } @phdthesis{Kroeger2010, author = {Kr{\"o}ger, Ingo}, title = {Adsorption von Phthalocyaninen auf Edelmetalloberfl{\"a}chen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57225}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In dieser Arbeit wurden methoden{\"u}bergreifend die Adsorbatsysteme CuPc/Ag(111), CuPc/Au(111), CuPc/Cu(111), H2Pc/Ag(111) und TiOPc/Ag(111) untersucht und detailliert charakterisiert. Der Schwerpunkt der Experimente lag in der Bestimmung der lateralen geometrischen Strukturen mit hochaufl{\"o}sender Elektronenbeugung (SPA-LEED) und Rastertunnelmikroskopie (STM), sowie der Adsorptionsh{\"o}hen mit der Methode der stehenden R{\"o}ntgenwellenfeldern (NIXSW). Hochaufl{\"o}sende Elektronenenergieverlustspektroskopie (HREELS) wurde verwendet, um die vibronische Struktur und den dynamischen Ladungstransfer an der Grenzfl{\"a}che zu charakterisieren. Die elektronische Struktur und der Ladungstransfer in die Molek{\"u}le wurde mit ultraviolett Photoelektronenspektroskopie (UPS) gemessen. Die wichtigsten Ergebnisse dieser Arbeit betreffen den Zusammenhang zwischen Adsorbat-Substrat Wechselwirkung und der Adsorbat-Adsorbat Wechselwirkung von Phthalocyaninen im Submonolagenbereich.}, subject = {Oberfl{\"a}che}, language = {de} } @phdthesis{Scherdel2009, author = {Scherdel, Christian}, title = {Kohlenstoffmaterialien mit nanoskaliger Morphologie - Entwicklung neuartiger Syntheserouten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45325}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Hochpor{\"o}se Kohlenstoffaerogele, die {\"u}ber den Sol-Gel-Prozeß auf der Basis von Resorzin und Formaldehyd hergestellt werden, sind Werkstoffe mit beeindruckenden physikalischen Eigenschaften. Leider werden bisher nur geringe Mengen an Kohlenstoffaerogelen produziert und aus Kostengr{\"u}nden auf g{\"u}nstigere Materialien mit vergleichsweise schlechteren Eigenschaften zur{\"u}ckgegriffen. Um diesen Nachteil zu nivellieren lag die Motivation der vorliegenden Arbeit in der Entwicklung neuer Syntheserouten f{\"u}r Kohlenstoffmaterialien mit nanoskaliger Morphologie, wobei insbesondere auf kosteng{\"u}nstige Edukte und/oder einfache Prozessierung zur{\"u}ckgegriffen werden sollte. Als in Frage kommende Eduktsysteme wurden Zucker, sowie Hydroxybenzol-Formaldehyd-Derivate ausgew{\"a}hlt. Die hergestellten Kohlenstoffe wurden haupts{\"a}chlich mit Elektronenmikroskopie, Gassorption und R{\"o}ntgenkleinwinkelstreuung (SAXS) charakterisiert. Um Fehlinterpretationen der experimentellen Daten f{\"u}r das neue Materialsystem zu vermeiden, war ein umfangreiches Wissen zu den Charakterisierungsmethoden und den diesen zugrundeliegenden physikalischen Prinzipien notwendig. Kohlenstoffpulver basierend auf sph{\"a}rischen Resorzin-Formaldehyd Suspensionen und Sedimenten bilden eine v{\"o}llig neue M{\"o}glichkeit zur Erzeugung von Kohlenstoffnanokugeln. Im Rahmen dieser Arbeit wurde deshalb systematisch der Bereich der Syntheseparameter im RF-System zu den nicht-monolithischen Parameters{\"a}tzen hin vervollst{\"a}ndigt. Anhand der bestimmten Daten konnte diese Stoffklasse umfassend und detailliert charakterisiert und interpretiert werden. Die Partikelgr{\"o}ße h{\"a}ngt im Wesentlichen von der Katalysatorkonzentration und in geringerem Maße von der Eduktmenge in der Startl{\"o}sung ab. Die ermittelte untere Grenze der Partikelgr{\"o}ße aus stabilen kolloidalen Dispersionen betr{\"a}gt ca. 30 nm. Gr{\"o}ßere Partikel als 5 µm konnten trotz Modifikation der Syntheseroute nicht erzeugt werden. Eine Absch{\"a}tzung {\"u}ber den Aggregationsgrad der Kohlenstoffpulver wurde durchgef{\"u}hrt. Eine Beimischung von Phenol verringert in diesem System zum einen die Partikelgr{\"o}ße und erzeugt zunehmend nicht-sph{\"a}rische Strukturen. Die aus Gassorption, SAXS und dynamischer Lichtstreuung (DLS) ermittelten Partikelgr{\"o}ßen stimmen gut {\"u}berein. Bei der Pyrolyse schrumpfen die Partikel auf 84\% des Ausgangswerts (Partikeldurchmesser). Ein Fokus dieser Arbeit lag in der Herstellung por{\"o}ser Kohlenstoffe mit Phenol und Formaldehyd (PF) als Eduktbasis und unterkritischer Trocknung (Kohlenstoffxerogele). Um die Bandbreite der Eigenschaften der resultierenden Kohlenstoffxerogele zu erweitern, wurden zahlreiche Modifikationen der Syntheseparameter und im Herstellungsprozeß durchgef{\"u}hrt. Die Ergebnisse zeigen, daß im Eduktsystem Phenol-Formaldehyd in w{\"a}ßriger L{\"o}sung mit Na2CO3 als basischem Katalysator prinzipiell por{\"o}se Xerogele herstellbar sind; allerdings verhindert eine ungew{\"o}hnliche Gelierkinetik (Flockenbildung statt Sol-Gel-{\"U}bergang) eine umfassende Interpretation des Systems, da die Reproduzierbarkeit der Ergebnisse nicht gew{\"a}hrleistet ist. Bei Phenol-Formaldehyd in w{\"a}ßriger L{\"o}sung und NaOH als Katalysator kommt es meist zu einem Kollabieren des Gelnetzwerks w{\"a}hrend der Trocknung. Lediglich bei hohem Formaldehyd{\"u}berschuß zeigt sich ein enger Bereich, in dem Xerogele mit geringer Dichte (rhomin = 0,22 g/cm3) und relevantem Mesoporenvolumen von bis zu 0,59 cm3/g synthetisierbar sind. Die interessanteste Kombination im PF-System ergibt sich mit HCl als Katalysator und n-Propanol als L{\"o}sungsmittel. Hier sind hochpor{\"o}se Kohlenstoffxerogele mit geringen Dichten (rhomin = 0,23 g/cm3) und f{\"u}r Xerogele sehr hoher Mesoporosit{\"a}t von bis zu Vmeso = 0,85 cm3/g m{\"o}glich. Damit ist es im Rahmen dieser Arbeit erstmals gelungen {\"u}ber konvektive Trocknung homogene hochpor{\"o}se Xerogel-Formk{\"o}rper auf PF-Basis zu synthetisieren. Aus der {\"U}berwachung des Sol-Gel-Prozesses mit Detektion der Soltemperatur konnten wichtige Erkenntnisse {\"u}ber exo- und endotherme Vorg{\"a}nge gewonnen werden. Zudem zeigt die Zeitabh{\"a}ngigkeit der Soltemperatur Gemeinsamkeiten f{\"u}r alle untersuchten Hydroxybenzol-Formaldehyd-Systeme. So kann der Gelpunkt der Ans{\"a}tze zuverl{\"a}ssig und auch reproduzierbar anhand eines zweiten lokalen Temperaturmaximums ermittelt werden, welches mit einer Gelpunktsenthalpie korreliert wird. Damit ist auch eine Prozeßkontrolle, z.B. f{\"u}r die Kombination mit Partikeltechnologien, m{\"o}glich. Die zugrundeliegenden Strukturbildungsmechanismen, Sol-Gel-Prozeß einerseits und Trocknung andererseits, wurden in-situ mittels SAXS beobachtet und anhand der gewonnenen Daten diskutiert und bewertet. Eine vollst{\"a}ndige Adaption des etablierten und akzeptierten Bildungsmechanismus von RF basierten Aerogelen (Partikelbildung aus Kondensationskeimen und Partikelwachstum) f{\"u}r das PF-System wird ausgeschlossen. Vielmehr scheint bei den untersuchten PF-Systemen auch eine Mikrophasenseparation als konkurrierender Prozeß zur Partikelbildung von Relevanz zu sein.}, subject = {Sol-Gel-Verfahren}, language = {de} }