@phdthesis{Wolpert2008, author = {Wolpert, Daniel}, title = {Quantum Control of Photoinduced Chemical Reactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27171}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The control of quantum mechanical processes, especially the selective manipulation of photochemical reactions by shaped fs laser pulses was successfully demonstrated in many experiments in the fields of physics, chemistry and biology. In this work, attention is directed to the control of two systems that mark a bridge to real synthetic chemistry. In a liquid phase environment the outcome of the photo-induced Wolff rearrangement of an industrially relevant diazonaphthoquinone compound, normally used in photoresists (e.g. Novolak) was optimized using shaped fs laser pulses. In the second series of experiments chemical reactions on a catalyst metal surface which comprise laser induced molecular bond formation channels were selectively manipulated for the first time. The control of liquid phase reactions necessitates adequate spectroscopic signals that are characteristic for the formed product species. Therefore, a pump-probe setup for transient absorption spectroscopy in the mid-infrared for the purpose of investigating ultrafast structural changes of molecules during photoreactions was constructed. This versatile setup enables to monitor structural changes of molecules in the liquid phase and to find appropriate feedback signals for the control of these processes. Prior to quantum control experiments, the photoinduced Wolff-rearrangement reaction of 2-diazo-1-naphthoquinone (DNQ) dissolved in water and methanol was thoroughly investigated. Steady state absorption measurements in the mid-infrared in combination with quantum chemical density functional theory (DFT) calculations revealed the characteristic vibrational bands of DNQ and of possible products. A mid-infrared transient absorption study was performed, to illuminate the structural dynamics of the ultrafast rearrangement reaction of DNQ. The experimental observations indicate, that the Wolff rearrangement reaction of DNQ proceeds within 300 fs. A model for the relaxation dynamics of the ketene photoproduct and DNQ after photoexcitation can be deduced that fits the measured data very well. The object of the quantum control experiments on DNQ was the improvement of the ketene yield. It was shown that the ketene formation after Wolff rearrangement of DNQ is very sensitive to the shape of the applied excitation laser pulses. The variation of single parameters, like the linear chirp as well as the pulse separation of colored double pulses lead to the conclusion that the well known intrapulse dumping mechanism is responsible for the impact of the frequency ordering within the excitation pulse on the photoproduct yield. Adaptive optimizations using a closed learning loop basically lead to the same result. Adaptive fs quantum control was also applied to surface reactions on a catalyst metal surface for the first time. Therefore, the laser-induced catalytic reactions of carbon monoxide (CO) and hydrogen (H2) on a Pd(100) single crystal surface were studied. This photochemical reaction initiated with fs laser pulses has not been observed before. Several product molecules could be synthesized, among them also species (e.g. CH^3+) for whose formation three particles are involved. The systematic variation of different parameters showed that the reactions are sensitive to the catalyst surface, the composition of the adsorbate and to the laser properties. A pump-probe study revealed that they occur on an ultrafast time scale. These catalytic surface reactions were then investigated and improved with phaseshaped fs laser pulses. By applying a feedback optimal control scheme, the reaction outcome could be successfully manipulated and the ratio of different reaction channels could be selectively controlled. Evidence has been found that the underlying control mechanism is nontrivial and sensitive to the specific conditions on the surface. The experiments shown here represent the first successful experiment on adaptive fs quantum control of a chemical reaction between adsorbate molecules on a surface. In contrast to previous quantum control experiments, reaction channels comprising the formation of new molecular bonds rather than the cleavage of already existing bonds are controlled. This work successfully showed that quantum control can be extended to systems closer to situations encountered in synthetic chemistry as was demonstrated in the two examples of the optimization of a complicated rearrangement reaction and the selective formation of chemical bonds with shaped fs laser pulses.}, subject = {Nichtlineare Spektroskopie}, language = {en} } @phdthesis{Fechner2008, author = {Fechner, Susanne}, title = {Quantenkontrolle im Zeit-Frequenz-Phasenraum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die in der vorliegenden Arbeit eingef{\"u}hrte von Neumann-Darstellung beschreibt jeden Laserpuls auf eineindeutige Weise als Summe von an verschiedenen Punkten des Zeit-Frequenz-Phasenraumes zentrierten, bandbreitebegrenzten Gaußimpulsen. Diese Laserpulse bilden sozusagen die „elementaren" Bausteine, aus denen jeder beliebige Lichtimpuls konstruiert werden kann. Die von Neumann-Darstellung vereint eine Reihe von Eigenschaften, die sie f{\"u}r eine Anwendung auf dem Gebiet der Quantenkontrolle besonders geeignet erscheinen l{\"a}sst. So ist sie eine bijektive Abbildung zwischen den Freiheitsgraden des verwendeten Impulsformers und der Phasenraumdarstellung der resultierenden, geformten Laserpulse. Jeder denkbaren Wahl von Impulsformerparametern entspricht genau eine von Neumann-Darstellung und umgekehrt. Trotzdem erm{\"o}glicht sie, ebenso wie die Husimi- oder die Wigner-Darstellung, eine intuitive Interpretation der dargestellten Lichtimpulse, da deren zeitliche und spektrale Struktur sofort zu erkennen ist.}, subject = {Femtosekundenlaser}, language = {de} } @phdthesis{Vogt2006, author = {Vogt, Gerhard Sebastian}, title = {Adaptive Femtosekunden-Quantenkontrolle komplexer Molek{\"u}le in kondensierter Phase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20222}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Die Bildung verschiedener Isomere durch {\"A}nderung der molekularen Struktur spielt eine wichtige Rolle in vielen Gebieten der Physik, Chemie und Biologie. Die Kontrolle dieser Reaktionen ist daher eine sehr interessante Herausforderung und von großer Bedeutung f{\"u}r viele verschiedene Bereiche. Die Entwicklung der letzten Jahre hat gezeigt, dass adaptive Femtosekunden Quantenkontrolle eine ausgesprochen geeignete Methode ist, um chemische Reaktionen zu kontrollieren. Die vorliegende Arbeit behandelt die Beobachtung und Kontrolle von solchen Isomerisierungsreaktionen in biologisch und chemisch relevanten Systemen. Dazu wurde die Reaktionsdynamik eines in Methanol gel{\"o}sten Modellmolek{\"u}ls mittlerer Gr{\"o}ße mittels transienter Absorption, Fluorescence Upconversion und Anisotropie Spektroskopie untersucht. In Kooperation mit F. Santoro und R. Improta konnte eine detaillierte Beschreibung der ablaufenden Prozesse gefunden werden. In {\"U}bereinstimmung mit den von ihnen durchgef{\"u}hrten quantenmechanischen Simulationen hat sich herausgestellt, dass sich die Dynamik auf der ersten angeregten Potentialfl{\"a}che nach der Anregung auf zwei Zeitskalen abspielt. Nach dem Passieren einer konische Durchschneidung isomerisiert das Molek{\"u}l entweder zum thermodynamisch stabileren trans Isomer oder zu den instabileren Produktisomeren. An diesem System wurden nun adaptive Femtosekunden Quantenkontrollexperimente durchgef{\"u}hrt, mit dem Ziel den Isomerisierungsprozess zu beeinflussen. Es konnte erfolgreich gezeigt werden, dass die Isomerisierungseffizienz (die relative Menge von Edukt- zu Produktisomeren) sowohl erh{\"o}ht als auch verringert werden kann. Einzel-Parameter Kontrollmechanismen wie zum Beispiel das Verwenden verschieden gechirpter Anregeimpulse oder unterschiedlicher Anregeimpulsenergien ergaben einen nur geringen Einfluss auf die Isomerisierungseffizienz. Diese Kontrollstudien {\"u}ber den Isomerisierungsprozess haben weiterf{\"u}hrende Experimente an dem sehr komplexen biologischen System Retinal innerhalb des Proteins Bakteriorhodopsin motiviert. Die traditionelle Anrege-Abrege-Abfrage Technik wurde zu einem neuen Anrege-geformten-Abrege-Abfrage Konzept erweitert. Dadurch k{\"o}nnen molekulare Systeme in den Regionen der Potentialenergie-Landschaft kontrolliert werden, in denen der entscheidende Reaktionsschritt stattfinded. Verschiedene theoretische Berechnungen zum Problem der Erh{\"o}hung der Isomerisierungseffizienz stellen in Aussicht, dass Anrege-Abrege-Wiederanrege-Abfrage Mechanismen eine M{\"o}glichkeit der effektiven Beeinflussung der Reaktionsdynamik er{\"o}ffnen. Mit der weiterentwickelten Methode k{\"o}nnen solche Vier-Puls-Techniken realisiert und ihr Einfluss auf den Reaktionsprozess systematisch untersucht werden. Zus{\"a}tzlich wurde mittels Variation von parametrisierten spektralen Phasenfunktionen, wie verschiedene Ordnungen Chirp, die Dynamik des Abregungsprozesses beleuchtet. Durch Formen des Abregungsimpulses mittels adaptiver Femtosekunden Quantenkontrolle wurden die Informationen aus den systematische Untersuchung vervollst{\"a}ndigt. H{\"a}ufig sind die aus einem adaptiven Femtosekunden Quantenkontrollexperiment erhaltenen optimalen Laserimpulsformen sehr kompliziert. Besonders Anrege-Abrege Szenarien spielen oft eine wichtige Rolle in den ermittelten optimalen L{\"o}sungen und sollten daher gesondert untersucht werden. Dazu k{\"o}nnen verschiedenfarbige Doppelimpulse verwendet werden, bei denen man sowohl den Pulsabstand als auch die relative Amplitude oder die Phasendifferenz der beiden Einzellpulse systematisch {\"a}ndert. Diese weiterentwickelte Methode wurde mittels einfacher Experimente charakterisiert. In einem weiteren Schritt wurde ein Aufbau entworfen, der Doppelimpulse erfordert, um ein maximale Ausbeute von Licht bei einer Wellenl{\"a}nge von 266~nm zu erhalten. Mit dem Kontrollziel der maximalen dritten Harmonischen Ausbeute wurden adaptive Femtosekunden Quantenkontrollexperimente durchgef{\"u}hrt. Durch zus{\"a}tzliche Messungen von verschiedenfarbigen Doppelimpuls-Kontrolllandschaften konnte die optimale Pulsform ermittelt und best{\"a}tigt werden. In einem abschließenden Experiment wurde die Abh{\"a}ngigkeit der Anregeeffizienz eines komplexen, in Methanol gel{\"o}sten Farbstoffmolek{\"u}ls auf verschiedene Impulsformen untersucht. Aus den Ergebnissen wird ersichtlich, dass sehr unterschiedliche Impulsformen ein Kontrollziel {\"a}hnlich gut erf{\"u}llen k{\"o}nnen. Verschiedenfarbige Doppelimpuls-Kontrolllandschaften k{\"o}nnen einen Einblick in Kontrollmechanismen von adaptiv gefundenen Impulsformen erm{\"o}glichen und Informationen {\"u}ber die Reaktionsdynamik liefern. Mittels der angewandten und weiterentwickelten Methoden mehr {\"u}ber verschiedene Prozesse unterschiedlicher Molek{\"u}lklassen zu lernen ist ein viel versprechendes und realistisches Ziel f{\"u}r die Zukunft. Die pr{\"a}sentierten Experimente zeigen, dass es m{\"o}glich ist, geometrische {\"A}nderungsreaktionen in chemisch und biologisch relevanten Systemen durch adaptive Femtosekunden Quantenkontrolle zu steuern.}, subject = {Molek{\"u}l}, language = {de} }