@phdthesis{Surrey2020, author = {Surrey, Verena}, title = {Identification of affected cellular targets, mechanisms and signaling pathways in a mouse model for spinal muscular atrophy with respiratory distress type 1 (SMARD1)}, doi = {10.25972/OPUS-17638}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176386}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal monogenic motoneuron disease in children with unknown etiology caused by mutations in the immunoglobulin μ-binding protein 2 (IGHMBP2) gene coding for DNA/RNA ATPase/helicase. Despite detailed knowledge of the underlying genetic changes, the cellular mechanisms leading to this disease are not well understood. In the Nmd2J ("neuromuscular disorder") mouse, the mouse model for the juvenile form of SMARD1 patients, in which similar pathological features as diaphragmatic paralysis and skeletal muscle atrophy are observed. Ex vivo studies in Nmd2J mice showed that loss of the motor axon precedes atrophy of the gastrocnemius muscle and does not correlate with neurotransmission defects in the motor endplate. The already described independent myogenic anomalies in the diaphragm and heart of the Nmd2J mouse raised the question whether spinal motoneuron degeneration develops cell autonomously. Ighmbp2 is predominantly localized in the cytoplasm and seems to bind to ribosomes and polysomes, suggesting a role in mRNA metabolism. In this Ph.D. thesis, morphological and functional analyses of isolated Ighmbp2-deficient (Ighmbp2-def.) motoneurons were performed to answer the question whether the SMARD1 phenotype results from dysregulation of protein biosynthesis. Ighmbp2-deficient motoneurons show only negligible morphological alterations with respect to a slight increase in axonal branches. This observation is consistent with only minor changes of transcriptome based on RNA sequencing data from Ighmbp2-deficient motoneurons. Only the mRNA of fibroblast growth factor receptor 1 (Fgfr1) showed significant up-regulation in Ighmbp2-deficient motoneurons. Furthermore, no global aberrations at the translational level could be detected using pulsed SILAC (Stable Isotope Labeling by Amino acids in cell culture), AHA (L-azidohomoalanine) labeling and SUnSET (SUrface SEnsing of Translation) methods. However, a reduced β-actin protein level was observed at the growth cones of Ighmbp2-deficient motoneurons, which was accompanied with a reduced level of Imp1 protein, a known β-actin mRNA interactor. Live-cell imaging studies using fluorescence recovery after photobleaching (FRAP) showed translational down-regulation of eGFPmyr-β-actin 3'UTR mRNA in the growth cones and the cell bodies, although the amount of β-actin mRNA and the total protein amount in Ighmbp2-deficient motoneurons showed no aberrations. This compartment-specific reduction of β-actin protein occurred independently of a non-existent direct IGHMBPF2 binding to β-actin mRNA. Fgfr1, which was upregulated on the RNA level, did not show an increased protein amount in Ighmbp2-deficient motoneurons, whereas a reduced amount could be detected. Interestingly, a correlation could be found between the reduced amount of the Imp1 protein and the increased Fgfr1 mRNA, since the IMP1 protein binds the FGFR1 mRNA and thus could influence the transport and translation of FGFR1 mRNA. In summary, all data suggest that Ighmbp2 deficiency leads to a local but modest disturbance of protein biosynthesis, which might contribute to the motoneuron defects of SMARD1.}, subject = {Spinale Muskelatrophie}, language = {en} } @phdthesis{Handoko2007, author = {Handoko, Lusy Lusiana}, title = {Functional Characterization of IGHMBP2, the Disease Gene Product of Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24984}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Spinale Muskelatrophie mit Atemnot Type 1 (SMARD1) ist eine autosomal rezessive, neurodegenerative Erkrankung, die sich h{\"a}ufig schon im S{\"a}uglings- und Kleinkindalter manifestiert. Pathologisches Merkmal von SMARD1 ist eine fr{\"u}he und akut einsetzende Atemnot und eine progrediente, zun{\"a}chst distal betonte Muskelschw{\"a}che, die durch eine L{\"a}hmung des Zwerchfells und der Skelettmuskulatur aufgrund des Absterbens der motorischen Vordernhornzellen des R{\"u}ckenmarks eintritt. SMARD1 ist eine monogene Krankheit, die durch Mutationen im Gen f{\"u}r das Immunoglobulin µ-bindende Protein 2" (IGHMBP2) hervorgerufen wird. Obwohl Mutationen in IGHMBP2 ausschließlich die Degeneration von Motoneuronen ausl{\"o}sen, ist das Gen bei Menschen und M{\"a}usen ubiquit{\"a}r exprimiert. Deshalb scheint SMARD1 durch den Defekt eines „Haushaltsproteins" statt eines Neuron-spezifischen Faktors verursacht zu werden. IGHMBP2 verf{\"u}gt {\"u}ber eine N-terminale DEXDc-Helicase/ATPase-Dom{\"a}ne und geh{\"o}rt zur Superfamily 1 Helicase. Bislang war lediglich bekannt, dass das Protein in verschiedenen zellul{\"a}ren Aktivit{\"a}ten wie DNA Replikation, Transkription und pr{\"a}-mRNA Splicing zugewiesen wurde. Die pr{\"a}zise Funktion von IGHMBP2 in den obengenannten Prozessen, und damit auch die molekulare Ursache von SMARD1 sind jedoch noch v{\"o}llig unklar. Das Ziel der vorliegenden Arbeit war es daher, das IGHMBP2 Protein sowohl enzymatisch zu charakterisieren als auch den Prozess zu identifizieren, in dem dieses Protein in vivo agiert. Mit diesem Wissen sollten dann pathogene Mutanten von IGHMBP2 auf Defekte hin untersucht werden. Ein Schl{\"u}ssel f{\"u}r diese Arbeit war die Gewinnung von rekombinantem, biologisch aktivem IGHMBP2 durch eine zweistufige Aufreinigungsstrategie. Dieses hochreine Enzym zeigte eine ATP-abh{\"a}ngige Helikaseaktivit{\"a}t, die sowohl doppelstr{\"a}ngige DNA als auch RNA mit einer 5'\&\#8594;3' Direktionalit{\"a}t entwindet. Interessanterweise zeigte sich, dass dieses Enzym -im Gegensatz zu fr{\"u}heren Befunden- nahezu ausschließlich im Zytoplasma von Zellen lokalisiert ist. Dar{\"u}ber hinaus wiesen die Affinit{\"a}tsaufreinigungsexperimente und Grossenfraktionierungsuntersuchungen daraufhin, dass IGHMBP2 ein Bestandteil des RNase-empfindlichen Komplexes ist, der als Ribosomen identifiziert wurde. IGHMBP2 interagiert prim{\"a}r mit 80S Monosomen, wobei das Protein mit beiden Untereinheiten in Kontakt steht. Hingegen ist IGHMBP2 an Polysomen nur in geringen Mengen zu finden. Diese Befunde deuten stark auf eine Rolle von IGHMBP2 bei der mRNA Verarbeitung am Ribosom hin, wobei noch unklar ist, ob es sich um translationsrelevante Prozesse handelt oder die mRNA-Stabilit{\"a}t beeinflusst. Die biochemische und enzymatische Charakterisierung von IGHMBP2 erlaubte erstmals Einblicke in den Pathomechanismus von SMARD1. In den folgenden Untersuchungen wurden die enzymatischen Aktivit{\"a}ten der SMARD1-erregenden Ighmbp2 Mutante und ihre Assoziation mit ribosomalen Untereinheiten nachgeforscht. Interessanterweise konnten pathogene Missense-Mutanten von IGHMBP2 noch genauso gut wie das Wildtyp-Protein mit ribosomalen Untereinheiten wechselwirken. Jedoch inhibierten alle bisher getesteten Mutanten die RNA Helikaseaktivit{\"a}t, allerdings {\"u}ber unterschiedliche Mechanismen. Diese Daten weisen darauf hin, dass ein Defekt in den enzymatischen Aktivit{\"a}ten des IGHMBP2 direkt mit der Pathogenese der SMARD1 korreliert. Des Weiteren lassen die im Rahmen dieser Arbeit erhaltenen Ergebnisse vermuten, dass SMARD1 durch Defekte in der zellularen Translationsmaschinerie entsteht.}, subject = {IGHMBP2}, language = {en} }