@phdthesis{SchliermanngebStratmann2023, author = {Schliermann [geb. Stratmann], Anna Theresa}, title = {The Role of FGF Receptor 2 in GDF5 mediated Signal Transduction}, doi = {10.25972/OPUS-19288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192889}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Bone morphogenetic proteins (BMPs) are involved in various aspects of cell-cell communication in complex life forms. They act as morphogens, help differentiate different cell types from different progenitor cells in development, and are involved in many instances of intercellular communication, from forming a body axis to healing bone fractures, from sugar metabolism to angiogenesis. If the same protein or protein family carries out many functions, there is a demand to regulate and fine-tune their biological activities, and BMPs are highly regulated to generate cell- and context-dependent outcomes. Not all such instances can be explained yet. Growth/differentiation factor (GDF)5 (or BMP14) synergizes with BMP2 on chondrogenic ATDC5 cells, but antagonizes BMP2 on myoblastic C2C12 cells. Known regulators of BMP2/GDF5 signal transduction failed to explain this context-dependent difference, so a microarray was performed to identify new, cell-specific regulatory components. One identified candidate, the fibroblast growth factor receptor (FGFR)2, was analyzed as a potential new co-receptor to BMP ligands such as GDF5: It was shown that FGFR2 directly binds BMP2, GDF5, and other BMP ligands in vitro, and FGFR2 was able to positively influence BMP2/GDF5-mediated signaling outcome in cell-based assays. This effect was independent of FGFR2s kinase activity, and independent of the downstream mediators SMAD1/5/8, p42/p44, Akt, and p38. The elevated colocalization of BMP receptor type IA and FGFR2 in the presence of BMP2 or GDF5 suggests a signaling complex containing both receptors, akin to other known co-receptors of BMP ligands such as repulsive guidance molecules. This unexpected direct interaction between FGF receptor and BMP ligands potentially opens a new category of BMP signal transduction regulation, as FGFR2 is the second receptor tyrosine kinase to be identified as BMP co-receptor, and more may follow. The integration of cell surface interactions between members of the FGF and BMP family especially may widen the knowledge of such cellular communication mechanisms which involve both growth factor families, including morphogen gradients and osteogenesis, and may in consequence help to improve treatment options in osteochodnral diseases.}, subject = {Molekularbiologie}, language = {en} } @phdthesis{Liu2022, author = {Liu, Ruiqi}, title = {Dynamic regulation of the melanocortin 4 receptor system in body weight homeostasis and reproductive maturation in fish}, doi = {10.25972/OPUS-20653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Puberty is an important period of life with physiological changes to enable animals to reproduce. Xiphophorus fish exhibit polymorphism in body size, puberty timing, and reproductive tactics. These phenotypical polymorphisms are controlled by the Puberty (P) locus. In X. nigrensis and X. multilineatus, the P locus encodes the melanocortin 4 receptor (Mc4r) with high genetic polymorphisms. Mc4r is a member of the melanocortin receptors, belonging to class A G-protein coupled receptors. The Mc4r signaling system consists of Mc4r, the agonist Pomc (precursor of various MSH and of ACTH), the antagonist Agrp and accessory protein Mrap2. In humans, MC4R has a role in energy homeostasis. MC4R and MRAP2 mutations are linked to human obesity but not to puberty. Mc4rs in X. nigrensis and X. multilineatus are present in three allele classes, A, B1 and B2, of which the X-linked A alleles express functional receptors and the male-specific Y-linked B alleles encode defective receptors. Male body sizes are correlated with B allele type and B allele copy numbers. Late-maturing large males carry B alleles in high copy number while early-maturing small males carry B alleles in low copy number or only A alleles. Cell culture co-expression experiments indicated that B alleles may act as dominant negative receptor mutants on A alleles. In this study, the main aim was to biochemically characterize the mechanism of puberty regulation by Mc4r in X. nigrensis and X. multilineatus, whether it is by Mc4r dimerization and/or Mrap2 interaction with Mc4r or other mechanisms. Furthermore, Mc4r in X. hellerii (another swordtail species) and medaka (a model organism phylogenetically close to Xiphophorus) were investigated to understand if the investigated mechanisms are conserved in other species. In medaka, the Mc4r signaling system genes (mc4r, mrap2, pomc, agrp1) are expressed before hatching, with agrp1 being highly upregulated during hatching and first feeding. These genes are mainly expressed in adult brain, and the transcripts of mrap2 co-localize with mc4r indicating a function in modulating Mc4r signaling. Functional comparison between wild-type and mc4r knockout medaka showed that Mc4r knockout does not affect puberty timing but significantly delays hatching due to the retarded embryonic development of knockout medaka. Hence, the Mc4r system in medaka is involved in regulation of growth rather than puberty. In Xiphophorus, expression co-localization of mc4r and mrap2 in X. nigrensis and X. hellerii fish adult brains was characterized by in situ hybridization. In both species, large males exhibit strikingly high expression of mc4r while mrap2 shows similar expression level in the large and small male and female. Differently, X. hellerii has only A-type alleles indicating that the puberty regulation mechanisms evolved independently in Xiphophorus genus. Functional analysis of Mrap2 and Mc4r A/B1/B2 alleles of X. multilineatus showed that increased Mrap2 amounts induce higher cAMP response but EC50 values do not change much upon Mrap2 co-expression with Mc4r (expressing only A allele or A and B1 alleles). A and B1 alleles were expressed higher in large male brains, while B2 alleles were only barely expressed. Mc4r A-B1 cells have lower cAMP production than Mc4r A cells. Together, this indicates a role of Mc4r alleles, but not Mrap2, in puberty onset regulation signaling. Interaction studies by FRET approach evidenced that Mc4r A and B alleles can form heterodimers and homodimers in vitro, but only for a certain fraction of the expressed receptors. Single-molecule colocalization study using super-resolution microscope dSTORM confirmed that only few Mc4r A and B1 receptors co-localized on the membrane. Altogether, the species-specific puberty onset regulation in X. nigrensis and X. multilineatus is linked to the presence of Mc4r B alleles and to some extent to its interaction with A allele gene products. This is reasoned to result in certain levels of cAMP signaling which reaches the dynamic or static threshold to permit late puberty in large males. In summary, puberty onset regulation by dominant negative effect of Mc4r mutant alleles is a special mechanism that is found so far only in X. nigrensis and X. multilineatus. Other Xiphophorus species obviously evolved the same function of the pathway by diverse mechanisms. Mc4r in other fish (medaka) has a role in regulation of growth, reminiscent of its role in energy homeostasis in humans. The results of this study will contribute to better understand the biochemical and physiological functions of the Mc4r system in vertebrates including human.}, subject = {Japank{\"a}rpfling}, language = {en} } @phdthesis{Surrey2020, author = {Surrey, Verena}, title = {Identification of affected cellular targets, mechanisms and signaling pathways in a mouse model for spinal muscular atrophy with respiratory distress type 1 (SMARD1)}, doi = {10.25972/OPUS-17638}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176386}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a fatal monogenic motoneuron disease in children with unknown etiology caused by mutations in the immunoglobulin μ-binding protein 2 (IGHMBP2) gene coding for DNA/RNA ATPase/helicase. Despite detailed knowledge of the underlying genetic changes, the cellular mechanisms leading to this disease are not well understood. In the Nmd2J ("neuromuscular disorder") mouse, the mouse model for the juvenile form of SMARD1 patients, in which similar pathological features as diaphragmatic paralysis and skeletal muscle atrophy are observed. Ex vivo studies in Nmd2J mice showed that loss of the motor axon precedes atrophy of the gastrocnemius muscle and does not correlate with neurotransmission defects in the motor endplate. The already described independent myogenic anomalies in the diaphragm and heart of the Nmd2J mouse raised the question whether spinal motoneuron degeneration develops cell autonomously. Ighmbp2 is predominantly localized in the cytoplasm and seems to bind to ribosomes and polysomes, suggesting a role in mRNA metabolism. In this Ph.D. thesis, morphological and functional analyses of isolated Ighmbp2-deficient (Ighmbp2-def.) motoneurons were performed to answer the question whether the SMARD1 phenotype results from dysregulation of protein biosynthesis. Ighmbp2-deficient motoneurons show only negligible morphological alterations with respect to a slight increase in axonal branches. This observation is consistent with only minor changes of transcriptome based on RNA sequencing data from Ighmbp2-deficient motoneurons. Only the mRNA of fibroblast growth factor receptor 1 (Fgfr1) showed significant up-regulation in Ighmbp2-deficient motoneurons. Furthermore, no global aberrations at the translational level could be detected using pulsed SILAC (Stable Isotope Labeling by Amino acids in cell culture), AHA (L-azidohomoalanine) labeling and SUnSET (SUrface SEnsing of Translation) methods. However, a reduced β-actin protein level was observed at the growth cones of Ighmbp2-deficient motoneurons, which was accompanied with a reduced level of Imp1 protein, a known β-actin mRNA interactor. Live-cell imaging studies using fluorescence recovery after photobleaching (FRAP) showed translational down-regulation of eGFPmyr-β-actin 3'UTR mRNA in the growth cones and the cell bodies, although the amount of β-actin mRNA and the total protein amount in Ighmbp2-deficient motoneurons showed no aberrations. This compartment-specific reduction of β-actin protein occurred independently of a non-existent direct IGHMBPF2 binding to β-actin mRNA. Fgfr1, which was upregulated on the RNA level, did not show an increased protein amount in Ighmbp2-deficient motoneurons, whereas a reduced amount could be detected. Interestingly, a correlation could be found between the reduced amount of the Imp1 protein and the increased Fgfr1 mRNA, since the IMP1 protein binds the FGFR1 mRNA and thus could influence the transport and translation of FGFR1 mRNA. In summary, all data suggest that Ighmbp2 deficiency leads to a local but modest disturbance of protein biosynthesis, which might contribute to the motoneuron defects of SMARD1.}, subject = {Spinale Muskelatrophie}, language = {en} } @phdthesis{Dagvadorj2016, author = {Dagvadorj, Nergui}, title = {Improvement of T-cell response against WT1-overexpressing leukemia by newly developed anti-hDEC205-WT1 antibody fusion proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149098}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Wilms tumor protein 1 (WT1) is a suitable target to develop an immunotherapeutic approach against high risk acute myeloid leukemia (AML), particularly their relapse after allogeneic hematopoietic stem cell transplantation (HSCT). As an intracellular protein traversing between nucleus and cytoplasm, recombinant expression of WT1 is difficult. Therefore, an induction of WT1-specific T-cell responses is mostly based on peptide vaccination as well as dendritic cell (DC) electroporation with mRNA encoding full-length protein to mount WT1-derived peptide variations presented to T cells. Alternatively, the WT1 peptide presentation could be broadened by forcing receptor-mediated endocytosis of DCs. In this study, antibody fusion proteins consisting of an antibody specific to the human DEC205 endocytic receptor and various fragments of WT1 (anti-hDEC205-WT1) were generated for a potential DC-targeted recombinant WT1 vaccine. Anti-hDEC205-WT1 antibody fusion proteins containing full-length or major parts of WT1 were not efficiently expressed and secreted due to their poor solubility and secretory capacity. However, small fragment-containing variants: anti-hDEC205-WT110-35, anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were obtained in good yields. Since three of these fusion proteins contain the most of the known immunogenic epitopes in their sequences, the anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were tested for their T-cell stimulatory capacities. Mature monocyte-derived DCs loaded with anti-hDEC205-WT191-138 could induce ex vivo T-cell responses in 12 of 16 blood samples collected from either healthy or HSC transplanted individuals compared to included controls (P < 0.01). Furthermore, these T cells could kill WT1-overexpressing THP-1 leukemia cells in vitro after expansion. In conclusion, alongside proving the difficulty in expression and purification of intracellular WT1 as a vaccine protein, our results from this work introduce an alternative therapeutic vaccine approach to improve an anti-leukemia immune response in the context of allogeneic HSCT and potentially beyond.}, subject = {Akute myeloische Leuk{\"a}mie}, language = {en} } @phdthesis{Pasch2016, author = {Pasch, Elisabeth}, title = {The role of SUN4 and related proteins in sperm head formation and fertility}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139092}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Spermiogenesis describes the differentiation of haploid germ cells into motile, fertilization-competent spermatozoa. During this fundamental transition the species-specific sperm head is formed, which necessitates profound nuclear restructuring coincident with the assembly of sperm-specific structures and chromatin compaction. In the case of the mouse, it is characterized by reshaping of the early round spermatid nucleus into an elongated sickle-shaped sperm head. This tremendous shape change requires the transduction of cytoskeletal forces onto the nuclear envelope (NE) or even further into the nuclear interior. LINC (linkers of nucleoskeleton and cytoskeleton) complexes might be involved in this process, due to their general function in bridging the NE and thereby physically connecting the nucleus to the peripheral cytoskeleton. LINC complexes consist of inner nuclear membrane integral SUN-domain proteins and outer nuclear membrane KASH-domain counterparts. SUN- and KASH-domain proteins are directly connected to each other within the perinuclear space, and are thus capable of transferring forces across the NE. To date, these protein complexes are known for their essential functions in nuclear migration, anchoring and positioning of the nucleus, and even for chromosome movements and the maintenance of cell polarity and nuclear shape. In this study LINC complexes were investigated with regard to their potential role in sperm head formation, in order to gain further insight into the processes occurring during spermiogenesis. To this end, the behavior and function of the testis-specific SUN4 protein was studied. The SUN-domain protein SUN4, which had received limited characterization prior to this work, was found to be exclusively expressed in haploid stages during germ cell development. In these cell stages, it specifically localized to the posterior NE at regions decorated by the manchette, a spermatid-specific structure which was previously shown to be involved in nuclear shaping. Mice deficient for SUN4 exhibited severely disorganized manchette residues and gravely misshapen sperm heads. These defects resulted in a globozoospermia-like phenotype and male mice infertility. Therefore, SUN4 was not only found to be mandatory for the correct assembly and anchorage of the manchette, but also for the correct localization of SUN3 and Nesprin1, as well as of other NE components. Interaction studies revealed that SUN4 had the potential to interact with SUN3, Nesprin1, and itself, and as such is likely to build functional LINC complexes that anchor the manchette and transfer cytoskeletal forces onto the nucleus. Taken together, the severe impact of SUN4 deficiency on the nucleocytoplasmic junction during sperm development provided direct evidence for a crucial role of SUN4 and other LINC complex components in mammalian sperm head formation and fertility.}, subject = {Maus}, language = {en} } @phdthesis{AnjanaVaman2015, author = {Anjana Vaman, Vamadevan Sujatha}, title = {LASP1, a newly identified melanocytic protein with a possible role in melanin release, but not in melanoma progression}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116316}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {LIM and SH3 protein 1 (LASP1) is a nucleocytoplasmic scaffolding protein. LASP1 interacts with various cytoskeletal proteins via its domain structure and is known to participate in physiological processes of cells. In the present study, a detailed investigation of the expression pattern of LASP1 protein in normal skin, melanocytic nevi and melanoma was carried out and the melanocyte-specific function of LASP1 was analyzed. LASP1 protein was identified in stratum basale of skin epidermis and a very high level was detected in nevi, the benign tumor of melanocyte. In the highly proliferative basal cells, an additional distinct nuclear localization of the protein was noted. In different tumor entities, an elevated LASP1 expression and nuclear localization, correlated positively with malignancy and tumor grade. However, LASP1 level was determined to be very low in melanoma and even reduced in metastases. Melanoma is distinguished as the first tumor tested to date - that displayed an absence of elevated LASP1 expression. In addition no significant relation was observed between LASP1 protein expression and clinicopathological parameters in melanoma. The epidermal melanin unit of skin comprises of melanocytes and keratinocytes. Melanocytes are specialized cells that synthesize the photo protective coloring pigment, melanin inside unique organelles called melanosomes. The presence of LASP1 in melanocytes is reported for the first time through this study and the existence was confirmed by immunoblotting analysis in cultured normal human epidermal melanocyte (NHEM) and in melanoma cell lines, along with the immunohistostaining imaging in normal skin and in melanocytic nevi. LASP1 depletion in MaMel2 cells revealed a moderate increase in the intracellular melanin level independently of de novo melanogenesis, pointing to a partial hindrance in melanin release. Immunofluorescence images of NHEM and MaMel2 cells visualized co-localization of LASP1 with dynamin and tyrosinase concomitant with melanosomes at the dendrite tips of the cells. Melanosome isolation experiments by sucrose density gradient centrifugation clearly demonstrated the presence of LASP1 and the melanosome specific markers tyrosinase and TRP1 in late stage melanosomes. The study identified LASP1 and dynamin as novel binding partners in melanocytes and provides first evidence for the existence of LASP1 and dynamin (a protein well-known for its involvement in vesicle formation and budding) in melanosomes. Co-localization of LASP1 and dynamin along the dendrites and at the tips of the melanocytes indicates a potential participation of the two proteins in the membrane vesicle fission at the plasma membrane. In summary, a possible involvement of LASP1 in the actin-dynamin mediated membrane fission and exocytosis of melanin laden melanosome vesicles into the extracellular matrix is suggested.}, subject = {Melanom}, language = {en} } @phdthesis{Scholl2015, author = {Scholl, Christina}, title = {Cellular and molecular mechanisms contributing to behavioral transitions and learning in the honeybee}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115527}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The honeybee Apis mellifera is a social insect well known for its complex behavior and the ability to learn tasks associated with central place foraging, such as visual navigation or to learn and remember odor-reward associations. Although its brain is smaller than 1mm² with only 8.2 x 105 neurons compared to ~ 20 x 109 in humans, bees still show amazing social, cognitive and learning skills. They express an age - related division of labor with nurse bees staying inside the hive and performing tasks like caring for the brood or cleaning, and foragers who collect food and water outside the hive. This challenges foragers with new responsibilities like sophisticated navigation skills to find and remember food sources, drastic changes in the sensory environment and to communicate new information to other bees. Associated with this plasticity of the behavior, the brain and especially the mushroom bodies (MBs) - sensory integration and association centers involved in learning and memory formation - undergo massive structural and functional neuronal alterations. Related to this background my thesis on one hand focuses on neuronal plasticity and underlying molecular mechanisms in the MBs that accompany the nurse - forager transition. In the first part I investigated an endogenous and an internal factor that may contribute to the nurse - forager phenotype plasticity and the correlating changes in neuronal network in the MBs: sensory exposure (light) and juvenile hormone (JH). Young bees were precociously exposed to light and subsequently synaptic complexes (microglomeruli, MG) in the MBs or respectively hemolymph juvenile hormone (JH) levels were quantified. The results show that light input indeed triggered a significant decrease in MG density, and mass spectrometry JH detection revealed an increase in JH titer. Interestingly light stimulation in young bees (presumably nurse bees) triggered changes in MG density and JH levels comparable to natural foragers. This indicates that both sensory stimuli as well as the endocrine system may play a part in preparing bees for the behavioral transition to foraging. Considering a connection between the JH levels and synaptic remodeling I used gene knockdown to disturb JH pathways and artificially increase the JH level. Even though the knockdown was successful, the results show that MG densities remained unchanged, showing no direct effect of JH on synaptic restructuring. To find a potential mediator of structural synaptic plasticity I focused on the calcium-calmodulin-dependent protein kinase II (CaMKII) in the second part of my thesis. CaMKII is a protein known to be involved in neuronal and behavioral plasticity and also plays an important part in structural plasticity reorganizing synapses. Therefore it is an interesting candidate for molecular mechanisms underlying MG reorganization in the MBs in the honeybee. Corresponding to the high abundance of CaMKII in the learning center in vertebrates (hippocampus), CaMKII was shown to be enriched in the MBs of the honeybee. Here I first investigated the function of CaMKII in learning and memory formation as from vertebrate work CaMKII is known to be associated with the strengthening of synaptic connections inducing long term potentiation and memory formation. The experimental approach included manipulating CaMKII function using 2 different inhibitors and a specific siRNA to create a CaMKII knockdown phenotype. Afterwards bees were subjected to classical olfactory conditioning which is known to induce stable long-term memory. All bees showed normal learning curves and an intact memory acquisition, short-term and mid-term memory (1 hour retention). However, in all cases long-term memory formation was significantly disrupted (24 and 72 hour retention). These results suggests the necessity of functional CaMKII in the MBs for the induction of both early and late phases of long-term memory in honeybees. The neuronal and molecular bases underlying long-term memory and the resulting plasticity in behavior is key to understanding higher brain function and phenotype plasticity. In this context CaMKII may be an important mediator inducing structural synaptic and neuronal changes in the MB synaptic network.}, subject = {Biene}, language = {en} } @phdthesis{Vona2014, author = {Vona, Barbara C.}, title = {Molecular Characterization of Genes Involved in Hearing Loss}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112170}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The auditory system is an exquisitely complex sensory organ dependent upon the synchronization of numerous processes for proper function. The molecular characterization of hereditary hearing loss is complicated by extreme genetic heterogeneity, wherein hundreds of genes dispersed genome-wide play a central and irreplaceable role in normal hearing function. The present study explores this area on a genome-wide and single gene basis for the detection of genetic mutations playing critical roles in human hearing. This work initiated with a high resolution SNP array study involving 109 individuals. A 6.9 Mb heterozygous deletion on chromosome 4q35.1q35.2 was identified in a syndromic patient that was in agreement with a chromosome 4q deletion syndrome diagnosis. A 99.9 kb heterozygous deletion of exons 58-64 in USH2A was identified in one patient. Two homozygous deletions and five heterozygous deletions in STRC (DFNB16) were also detected. The homozygous deletions alone were enough to resolve the hearing impairment in the two patients. A Sanger sequencing assay was developed to exclude a pseudogene with a high percentage sequence identity to STRC from the analysis, which further solved three of the six heterozygous deletion patients with the hemizygous, in silico predicted pathogenic mutations c.2726A>T (p.H909L), c.4918C>T (p.L1640F), and c.4402C>T (p.R1468X). A single patient who was copy neutral for STRC and without pathogenic copy number variations had compound heterozygous mutations [c. 2303_2313+1del12 (p.G768Vfs*77) and c.5125A>G (p.T1709A)] in STRC. It has been shown that STRC has been previously underestimated as a hearing loss gene. One additional patient is described who does not have pathogenic copy number variation but is the only affected member of his family having hearing loss with a paternally segregating translocation t(10;15)(q26.13;q21.1). Twenty-four patients without chromosomal aberrations and the above described patient with an USH2A heterozygous deletion were subjected to a targeted hearing loss gene next generation sequencing panel consisting of either 80 or 129 hearing-relevant genes. The patient having the USH2A heterozygous deletion also disclosed a second mutation in this gene [c.2276G>T (p.C759F)]. This compound heterozygous mutation is the most likely cause of hearing loss in this patient. Nine mutations in genes conferring autosomal dominant hearing loss [ACTG1 (DFNA20/26); CCDC50 (DFNA44); EYA4 (DFNA10); GRHL2 (DFNA28); MYH14 (DFNA4A); MYO6 (DFNA22); TCF21 and twice in MYO1A (DFNA48)] and four genes causing autosomal recessive hearing loss were detected [GJB2 (DFNB1A); MYO7A (DFNB2); MYO15A (DFNB3), and USH2A]. Nine normal hearing controls were also included. Statistical significance was achieved comparing controls and patients that revealed an excess of mutations in the hearing loss patients compared to the control group. The family with the GRHL2 c.1258-1G>A mutation is only the second family published worldwide with a mutation described in this gene to date, supporting the initial claim of this gene causing DFNA28 hearing loss. Audiogram analysis of five affected family members uncovered the progressive nature of DFNA28 hearing impairment. Regression analysis predicted the annual threshold deterioration in each of the five family members with multiple audiograms available over a number of years.}, subject = {Molekularbiologie}, language = {en} } @phdthesis{Kern2014, author = {Kern, Selina Melanie}, title = {Functional characterization of splicing-associated kinases in the blood stages of the malaria parasite Plasmodium falciparum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115219}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Besides HIV and tuberculosis, malaria still is one of the most devastating infectious diseases especially in developing countries, with Plasmodium falciparum being responsible for the frequently lethal form of malaria tropica. It is a major cause of mortality as well as morbidity, whereby pregnant women and children under the age of five years are most severely affected. Rapidly emerging drug resistances and the lack of an effective and safe vaccine hamper the combat against malaria by chemical and pharmacological regimens, and moreover the poor socio-economic and healthcare conditions in malaria-endemic countries are compromising the extermination of this deadly tropical disease to a large extent. Malaria research is still questing for druggable targets in the parasitic protozoan which pledge to be refractory against evolving resistance-mediating mutations and yet constitute affordable and compliant antimalarial chemotherapeutics. The parasite kinome consists of members that represent most eukaryotic protein kinase groups, but also contains several groups that can not be assigned to conservative ePK groups. Moreover, given the remarkable divergence of plasmodial kinases in respect to the human host kinome and the fact that several plasmodial kinases have been identified that are essential for the intraerythrocytic developmental cycle, these parasite enzymes represent auspicious targets for antimalarial regimens. Despite elaborate investigations on several other ePK groups, merely scant research has been conducted regarding the four identified members of the cyclin-dependent kinase-like kinase (CLK) family, PfCLK-1-4. In other eukaryotes, CLKs are involved in mRNA processing and splicing by means of phosphorylation of serine/arginine-rich (SR) proteins, which are crucial components of the splicing machinery in the alternative splicing pathway. All four PfCLKs are abundantly expressed in asexual parasites and gametocytes, and stage-specific expression profiles of PfCLK-1 and PfCLK-2 exhibited nucleus-associated localization and an association with phosphorylation activity. In the course of this study, PfCLK-3 and PfCLK-4 were functionally characterized by indirect immunofluorescence, Western blot analysis and kinase activity assays. These data confirm that the two kinases are primarily expressed in the nucleus of trophozoites and both kinases possess in vitro phosphorylation activity on physiological substrates. Likewise PfCLK-1 and PfCLK-2, reverse genetic studies exhibited the indispensability of both PfCLKs on the asexual life cycle of P. falciparum, rendering them as potential candidates for antiplasmodial strategies. Moreover, this study was conducted to identify putative SR proteins as substrates of all four PfCLKs. Previous alignments revealed a significant homology of the parasite CLKs to yeast SR protein kinase Sky1p. Kinase activity assays showed in vitro phosphorylation of the yeast Sky1p substrate and SR protein Npl3p by precipitated PfCLKs. In addition, four homologous plasmodial SR proteins were identified that are phosphorylated by PfCLKs in vitro: PfASF-1, PFSRSF12, PfSFRS4 and PfSR-1. All four parasite SR splicing factors are predominantly expressed in the nuclei of trophozoites. For PfCLK-1, a co-localization with the SR proteins was verified. Finally, a library of human and microbial CLK inhibitors and the antiseptic chlorhexidine (CHX) was screened to determine their inhibitory effect on different parasite life cycle stages and on the PfCLKs specifically. Five inhibitors out of 63 compounds from the investigated library were selected that show a moderate inhibition on asexual life cycle stages with IC50 values ranging between approximately 4 and 8 µM. Noteworthy, these inhibitors belong to the substance classes of aminopyrimidines or oxo-β-carbolines. Actually, the antibiotic compound CHX demonstrated an IC50 in the low nanomolar range. Stage-of-inhibition assays revealed that CHX severely affects the formation of schizonts. All of the selected CLKs inhibitors also affect gametocytogenesis as well as gametogenesis, as scrutinized in gametocyte toxicity assays and exflagellation assays, respectively. Kinase activity assays confirm a specific inhibition of CLK-mediated phosphorylation of all four kinases, when the CLK inhibitors are applied on immunoprecipitated PfCLKs. These findings on PfCLK-inhibiting compounds are initial attempts to determine putative antimalarial compounds targeting the PfCLKs. Moreover, these results provide an effective means to generate chemical kinase KOs in order to phenotypically study the role of the PfCLKs especially in splicing events and mRNA metabolism. This approach of functionally characterizing the CLKs in P. falciparum is of particular interest since the malarial spliceosome is still poorly understood and will gain further insight into the parasite splicing machinery.}, subject = {Plasmodium falciparum}, language = {en} } @phdthesis{Vona2014, author = {Vona, Barbara C.}, title = {Molecular Characterization of Genes Involved in Hearing Loss}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98031}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The auditory system is an exquisitely complex sensory organ dependent upon the synchronization of numerous processes for proper function. The molecular characterization of hereditary hearing loss is complicated by extreme genetic heterogeneity, wherein hundreds of genes dispersed genome-wide play a central and irreplaceable role in normal hearing function. The present study explores this area on a genome-wide and single gene basis for the detection of genetic mutations playing critical roles in human hearing. This work initiated with a high resolution SNP array study involving 109 individuals. A 6.9 Mb heterozygous deletion on chromosome 4q35.1q35.2 was identified in a syndromic patient that was in agreement with a chromosome 4q deletion syndrome diagnosis. A 99.9 kb heterozygous deletion of exons 58-64 in USH2A was identified in one patient. Two homozygous deletions and five heterozygous deletions in STRC (DFNB16) were also detected. The homozygous deletions alone were enough to resolve the hearing impairment in the two patients. A Sanger sequencing assay was developed to exclude a pseudogene with a high percentage sequence identity to STRC from the analysis, which further solved three of the six heterozygous deletion patients with the hemizygous, in silico predicted pathogenic mutations c.2726A>T (p.H909L), c.4918C>T (p.L1640F), and c.4402C>T (p.R1468X). A single patient who was copy neutral for STRC and without pathogenic copy number variations had compound heterozygous mutations [c. 2303_2313+1del12 (p.G768Vfs*77) and c.5125A>G (p.T1709A)] in STRC. It has been shown that STRC has been previously underestimated as a hearing loss gene. One additional patient is described who does not have pathogenic copy number variation but is the only affected member of his family having hearing loss with a paternally segregating translocation t(10;15)(q26.13;q21.1). Twenty-four patients without chromosomal aberrations and the above described patient with an USH2A heterozygous deletion were subjected to a targeted hearing loss gene next generation sequencing panel consisting of either 80 or 129 hearing-relevant genes. The patient having the USH2A heterozygous deletion also disclosed a second mutation in this gene [c.2276G>T (p.C759F)]. This compound heterozygous mutation is the most likely cause of hearing loss in this patient. Nine mutations in genes conferring autosomal dominant hearing loss [ACTG1 (DFNA20/26); CCDC50 (DFNA44); EYA4 (DFNA10); GRHL2 (DFNA28); MYH14 (DFNA4A); MYO6 (DFNA22); TCF21 and twice in MYO1A (DFNA48)] and four genes causing autosomal recessive hearing loss were detected [GJB2 (DFNB1A); MYO7A (DFNB2); MYO15A (DFNB3), and USH2A]. Nine normal hearing controls were also included. Statistical significance was achieved comparing controls and patients that revealed an excess of mutations in the hearing loss patients compared to the control group. The family with the GRHL2 c.1258-1G>A mutation is only the second family published worldwide with a mutation described in this gene to date, supporting the initial claim of this gene causing DFNA28 hearing loss. Audiogram analysis of five affected family members uncovered the progressive nature of DFNA28 hearing impairment. Regression analysis predicted the annual threshold deterioration in each of the five family members with multiple audiograms available over a number of years.}, subject = {Molekularbiologie}, language = {en} }