@phdthesis{Schuessler2020, author = {Sch{\"u}ßler, Lion Maximilian}, title = {Analyse der Wirksamkeit der SMAC Mimetics Birinapant, BV6 und LCL161 und der Zytostatika Docetaxel und Paclitaxel auf Zellen des Multiplen Myeloms}, doi = {10.25972/OPUS-20897}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208974}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Die Zellen des Multiplen Myeloms (MM) zeichnen sich durch eine klonale Heterogenit{\"a}t aus, die eine kurative Therapie erschwert und zu Resistenzen gegen{\"u}ber Medikamenten f{\"u}hrt. Neue Substanzen, wie die Smac Mimetics Birinapant, BV6 und LCL161, sollen durch Nachahmung des in der Krebszelle reduziert vorkommenden Gegenspielers (SMAC/Diablo) der Apoptose-Inhibitoren (IAPs) die Apoptose der entarteten Zellen induzieren. In der vorliegenden Arbeit wurde die Wirksamkeit der Smac Mimetics Birinapant, BV6 und LCL161 und der Zytostatika Docetaxel und Paclitaxel auf 10 humane MM-Zellen in vitro untersucht. Es konnte bei einigen Zelllinien ein synergetischer Effekt auf die Reduktion der Zellzahl in einer Kombinationstherapie mit den Smac Mimetics und den Zytostatika nachgewiesen und teilweise Resistenzen {\"u}berwunden werden. Weitere Forschungsarbeit zu Kombinationstherapien mit Smac Mimetics sollen deren Rolle und klinischen Nutzen in einer Therapiem{\"o}glichkeit bei rezidivierenden und refrakt{\"a}ren MM-Patienten untersuchen.}, subject = {Plasmozytom}, language = {de} } @phdthesis{Amschler2010, author = {Amschler, Katharina}, title = {Sensibilisierung von Melanomzellen gegen{\"u}ber Zytostatika durch zwei verschiedene Mechanismen der NF-kB-Inhibition}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56342}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Die vorliegende Arbeit zeigt eine M{\"o}glichkeit auf, die bisher meist erfolglose Chemotherapie des malignen Melanoms zu verbessern: Durch Inhibition des Transkriptionsfaktors NF-kB, der f{\"u}r die Regulation vieler tumorrelevanter Gene verantwortlich ist, konnten die Tumorzellen gegen{\"u}ber der Wirkung von Zytostatika sensibilisiert werden. Zun{\"a}chst wurden acht verschiedene Melanomzellen in Bezug auf ihre NF-kB-Aktivit{\"a}t und der Expression NF-kB-regulierter Proteine vergleichen. Es konnte gezeigt werden, dass die Mehrzahl der Melanomzellen {\"u}ber konstitutive Aktivit{\"a}t von NF-κB verf{\"u}gt. Dabei bestand kein eindeutiger Zusammenhang zwischen der Expression NF-kB-regulierter Proteine und der Aktivit{\"a}t dieses Transkriptionsfaktors im Kern, was komplexe Regulationsmechanismen bei der Transkription und Translation vermuten l{\"a}sst. Anhand einer ausgew{\"a}hlten Melanomzelllinie konnte gezeigt werden, dass zwei verschiedene NF-kB-Inhibitoren, der Proteasom-Inhibitor Bortezomib und der neue IKK-Inhibitor KINK-1 die Aktivit{\"a}t von NF-kB deutlich hemmen. Beim Vergleich beider NF-kB-Inhibitoren ließen sich unerwartet verschiedene molekulare Wirkungsmechanismen nachweisen: W{\"a}hrend Bortezomib konzentrationsabh{\"a}ngig eine sehr starke Induktion von NOXA, eine Induktion von p53 sowie eine Abnahme von Cyclin D1 bewirkte, zeigte KINK-1 seine Effekte vor allem in der Reduktion von Chemokinen wie IL-8 und MCP-1. Passend zur Ver{\"a}nderung der Expression zellzyklus-relevanter Proteine hatte Bortezomib einen st{\"a}rkeren Effekt auf den Zellzyklus als KINK-1. Beide Inhibitoren wurden mit verschiedenen Zytostatika kombiniert und konnten einerseits die Apoptoseinduktion durch Zytostatika verst{\"a}rken und andererseits die durch Zytostatika reduzierte Invasion weiter reduzieren. Allerdings zeigte sich bei der Untersuchung tumorrelevanter Chemokine, dass KINK-1 im Gegensatz zu Bortezomib synergistische Effekte mit Camptothecin und Doxorubicin aufweist. Trotz molekularer Unterschiede bewirkten beide NF-kB-Inhibitoren vergleichbare funktionelle Effekte auf zellul{\"a}rer Ebene. Dies galt auch f{\"u}r ein pr{\"a}klinisches in-vivo-Modell, in dem die experimentelle Lungenmetastasierung von B16F10-Melanomzellen in M{\"a}usen ermittelt wurde: Hier wurden die M{\"a}use mit Camptothecin, KINK-1 und Bortezomib allein im Vergleich zu den jeweiligen Kombinationen aus Zytostatikum und NF-kB-Inhibitor behandelt. Beide Kombinationen zeigten eine signifikante Reduktion des Lungengewichts im Vergleich zu Camptothecin allein. Diese Arbeit konnte also den Nutzen aus NF-kB-Inhibition in Kombination mit Zytostatika f{\"u}r die hier verwendeten Substanzen bekr{\"a}ftigen und dabei einige molekulare Unterschiede aufdecken.}, subject = {Apoptosis}, language = {de} } @phdthesis{Gloeckner2001, author = {Gl{\"o}ckner, Herma}, title = {Characterization of a new miniaturized hollow-fiber bioreactor for cultivation of cell lines and primary cells to improve cytostatic drug testing in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1181317}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Monolayer or suspension cell cultures are of only limited value as experimental models for human cancer. Therefore, more sophisticated, three-dimensional culture systems like spheroid cultures or histocultures are used, which more closely mimic the tumor in individual patients compared to monolayer or suspension cultures. As tissue culture or tissue engineering requires more sophisticated culture, specialized in vitro techniques may also improve experimental tumor models. In the present work, a new miniaturized hollow-fiber bioreactor system for mammalian cell culture in small volumes (up to 3 ml) is characterized with regard to transport characteristics and growth of leukemic cell lines (chapter 2). Cell and medium compartment are separated by dialysis membranes and oxygenation is accomplished using oxygenation membranes. Due to a transparent housing, cells can be observed by microscopy during culture. The leukemic cell lines CCRF-CEM, HL-60 and REH were cultivated up to densities of 3.5 x 107/ml without medium change or manipulation of the cells. Growth and viability of the cells in the bioreactor were the same or better, and the viable cell count was always higher compared to culture in Transwell{\^a} plates. As shown using CCRF-CEM cells, growth in the bioreactor was strongly influenced and could be controlled by the medium flow rate. As a consequence, consumption of glucose and generation of lactate varied with the flow rate. Influx of low molecular weight substances in the cell compartment could be regulated by variation of the concentration in the medium compartment. Thus, time dependent concentration profiles (e.g. pharmacokinetic profiles of drugs) can be realized as illustrated using glucose as a model compound. Depending on the molecular size cut-off of the membranes used, added growth factors like GM-CSF and IL-3 as well as factors secreted from the cells are retained in the cell compartment for up to one week. Second, a method for monitoring cell proliferation the hollow-fiber bioreactor by use of the Alamar BlueTM dye was developed (chapter 3). Alamar BlueTM is a non-fluorescent compound which yields a fluorescent product after reduction e.g. by living cells. In contrast to the MTT-assay, the Alamar BlueTM-assay does not lead to cell death. However, when not removed from the cells, the Alamar BlueTM dye shows a reversible, time- and concentration-dependent growth inhibition as observed for leukemic cell lines. When applied in the medium compartment of a hollow-fiber bioreactor system, the dye is delivered to the cells across the hollow-fiber membrane, reduced by the cells and released from the cell into the medium compartment back again. Thus, fluorescence intensity can be measured in medium samples reflecting growth of the cells in the cell compartment. This procedure offers several advantages. First, exposure of the cells to the dye can be reduced compared to conventional culture in plates. Second, handling steps are minimized since no sample of the cells needs to be taken for readout. Moreover, for the exchange of medium, a centrifugation step can be avoided and the cells can be cultivated further. Third, the method allows to discriminate between cell densities of 105, 106 and 107 of proliferating HL-60 cells cultivated in the cell compartment of the bioreactor. Measurement of fluorescence in the medium compartment is more sensitive compared to glucose or lactate measurement for cell counts below 106 cells/ml, in particular. In conclusion, the Alamar BlueTM-assay combined with the hollow-fiber bioreactor offers distinct advantages for the non-invasive monitoring of cell viability and proliferation in a closed system. In chapter 4 the use of the hollow-fiber bioreactor as a tool for toxicity testing was investigated, as current models for toxicity as well as efficacy testing of drugs in vitro allow only limited conclusions with regard to the in vivo situation. Examples of the drawbacks of current test systems are the lack of realistic in vitro tumor models and difficulties to model drug pharmacokinetics. The bioreactor proved to be pyrogen free and is steam-sterilizable. Leukemic cell lines like HL-60 and primary cells such as PHA-stimulated lymphocytes can be grown up to high densities of 1-3 x 107 and analyzed during growth in the bioreactor by light-microscopy. The cytostatic drug Ara-C shows a dose-dependent growth inhibition of HL-60 cells and a dose-response curve similar to controls in culture plates. The bioreactor system is highly flexible since several systems can be run in parallel, soluble drugs can be delivered continuously via a perfusion membrane and gaseous compounds via an oxygenation membrane which also allows to control pO2 and pH (via pCO2) during culture in the cell compartment. The modular concept of the bioreactor system allows realization of a variety of different design properties, which may lead to an improved in vitro system for toxicity testing by more closely resembling the in vivo situation. Whereas several distinct advantages of the new system have been demonstrated, more work has to be done to promote in vitro systems in toxicity testing and drug development further and to reduce the need for animal tests.}, subject = {Hohlfaserreaktor}, language = {en} }