@phdthesis{Hoelscher2012, author = {H{\"o}lscher, Uvo Christoph}, title = {Relaxations-Dispersions-Bildgebung in der Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79554}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Das Ziel dieser Promotion ist der Aufbau eines dreMR Setups f{\"u}r einen klinischen 1,5T Scanner, das die Relaxations-Dispersions-Bildgebung erm{\"o}glicht, und die anschließende Ergr{\"u}ndung von m{\"o}glichst vielen Anwendungsfeldern von dreMR. Zu der Aufgabe geh{\"o}rt die Bereitstellung der zugrunde liegenden Theorie, der Bau des experimentellen Setups (Offset-Spule und Stromversorgung) sowie die Programmierung der n{\"o}tigen Software. Mit dem gebauten Setup konnten zwei große Anwendungsfelder — dreMR Messungen mit und ohne Kontrastmitteln — untersucht werden.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{Wichmann2012, author = {Wichmann, Tobias}, title = {Spulen-Arrays mit bis zu 32 Empfangselementen f{\"u}r den Einsatz an klinischen NMR-Ger{\"a}ten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79358}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In dieser Arbeit wurden f{\"u}r spezielle Anwendungen an klinischen MR-Ger{\"a}ten optimierte Phased-Array-Spulen entwickelt. Das Ziel war, durch die Verwendung neuer Spulen entweder neue Anwendungsgebiete f{\"u}r klinische MR-Ger{\"a}te zu er{\"o}ffnen oder bei bestehenden Applikationen die Diagnosem{\"o}glichkeiten durch eine Kombination von h{\"o}herem SNR und kleineren g-Faktoren im Vergleich zu bestehenden Spulen zu verbessern. In Kapitel 3 wurde untersucht, ob es durch den Einsatz neu entwickelter, dedizierter Kleintierspulen sinnvoll m{\"o}glich ist, Untersuchungen an Kleintieren an klinischen MR-Ger{\"a}ten mit einer Feldst{\"a}rke von 1,5T durchzuf{\"u}hren. Der Einsatz dieser Spulen verspricht dem klinischen Anwender Studien an Kleintieren durchf{\"u}hren zu k{\"o}nnen, bei denen er den gleichen Kontrast wie bei einer humanen Anwendung erh{\"a}lt und gleichzeitig Kontrastmittel sowie Sequenzen, die klinisch erprobt sind, einzusetzen. Durch die gew{\"a}hlten geometrischen Abmessungen der Spulen ist es m{\"o}glich, Zubeh{\"o}r von dedizierten Tier-MR-Ger{\"a}ten, wie z. B. Tierliegen oder EKG- bzw. Atemtriggereinheiten, zu verwenden. Durch Vorversuche an f{\"u}r Ratten dimensionierten Spulen wurden grundlegende Zusammenh{\"a}nge zwischen verwendetem Entkopplungsmechanismus und SNR bzw. Beschleunigungsf{\"a}higkeit erarbeitet. F{\"u}r Ratten wurde gezeigt, dass in akzeptablen Messzeiten von unter f{\"u}nf Minuten MR-Messungen des Abdomens in sehr guter Bildqualit{\"a}t m{\"o}glich sind. Ebenfalls gezeigt wurde die M{\"o}glichkeit durch den Einsatz von paralleler Bildgebung sowie Kontrastmitteln hochaufgel{\"o}ste Angiographien durchzuf{\"u}hren. Es stellte sich heraus, dass bei 1,5T dedizierte M{\"a}usespulen bei Raumtemperatur von den SNR-Eigenschaften am Limit des sinnvoll Machbaren sind. Trotzdem war es m{\"o}glich, auch f{\"u}r M{\"a}use ein 4-Kanal-Phased-Array zu entwickeln und den Einsatz bei kontrastmittelunterst{\"u}tzten Applikationen zu demonstrieren. Insgesamt wurde gezeigt, dass durch den Einsatz von speziellen, angepassten Kleintierspulen auch Tieruntersuchungen an klinischen MR-Ger{\"a}ten mit niedriger Feldst{\"a}rke durchf{\"u}hrbar sind. Obwohl sich die Bestimmung der Herzfunktion an MR-Ger{\"a}ten im klinischen Alltag zum Goldstandard entwickelt hat, ist die MR-Messung durch lange Atemanhaltezyklen f{\"u}r einen Herzpatienten sehr m{\"u}hsam. In Kapitel 4 wurde deswegen die Entwicklung einer 32-Kanal-Herzspule beschrieben, welche den Komfort f{\"u}r Patienten deutlich erh{\"o}hen kann. Schon mit einem ersten Prototypen f{\"u}r 3T war es m{\"o}glich, erstmals Echtzeitbildgebung mit leicht reduzierter zeitlicher Aufl{\"o}sung durchzuf{\"u}hren und damit auf das Atemanhalten komplett zu verzichten. Dies erm{\"o}glicht den Zugang neuer Patientengruppen, z. B. mit Arrythmien, zu MR-Untersuchungen. Durch eine weitere Optimierung des Designs wurde das SNR sowie das Beschleunigungsverm{\"o}gen signifikant gesteigert. Bei einem Beschleunigungsfaktor R = 5 in einer Richtung erh{\"a}lt man z. B. gemittelt {\"u}ber das gesamte Herz ein ca. 60 \% gesteigertes SNR zu dem Prototypen. Die Kombination dieser Spule zusammen mit neuentwicklelten Methoden wie z. B. Compressed- Sensing stellt es in Aussicht, die Herzfunktion zuk{\"u}nftig in der klinischen Routine in Echtzeit quantifizieren zu k{\"o}nnen. In Kapitel 5 wurde die Entwicklung einer optimierten Brustspulen f{\"u}r 3T beschrieben. Bei Vorversuchen bei 1,5T wurden Vergleiche zwischen der Standardspule der Firma Siemens Healthcare und einem 16-Kanal-Prototypen durchgef{\"u}hrt. Trotz gr{\"o}ßerem Spulenvolumen zeigt die Neuentwicklung sowohl hinsichtlich SNR als auch paralleler Bildgebungseigenschaften eine signifikante Verbesserung gegen{\"u}ber der Standardspule. Durch die Einhaltung aller Kriterien f{\"u}r Medizinprodukte kann diese Spule auch f{\"u}r den klinischen Einsatz verwendet werden. Mit den verbesserten Eigenschaften ist es beispielsweise m{\"o}glich, bei gleicher Messdauer eine h{\"o}here Aufl{\"o}sung zu erreichen. Aufgrund des intrinsischen SNR-Vorteils der 3 T-Spule gegen{\"u}ber der 1,5 T-Spule ist es dort sogar m{\"o}glich, bei h{\"o}heren Beschleunigungsfaktoren klinisch verwertbare Schnittbilder zu erzeugen. Zusammenfassend wurden f{\"u}r alle drei Applikationen NMR-Empfangsspulen entwickelt, die im Vergleich zu den bisher verf{\"u}gbaren Spulen, hinsichtlich SNR und Beschleunigungsverm{\"o}gen optimiert sind und dem Anwender neue M{\"o}glichkeiten bieten.}, subject = {Kernspintomografie}, language = {de} } @phdthesis{BasseLuesebrink2012, author = {Basse-L{\"u}sebrink, Thomas Christian}, title = {Application of 19F MRI for in vivo detection of biological processes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77188}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {This thesis focuses on various aspects and techniques of 19F magnetic resonance (MR). The first chapters provide an overview of the basic physical properties, 19F MR and MR sequences related to this work. Chapter 5 focuses on the application of 19F MR to visualize biological processes in vivo using two different animal models. The dissimilar models underlined the wide applicability of 19F MR in preclinical research. A subsection of Chapter 6 shows the application of compressed sensing (CS) to 19F turbo-spin-echo chemical shift imaging (TSE-CSI), which leads to reduced measurement time. CS, however, can only be successfully applied when a sufficient signal-to-noise ratio (SNR) is available. When the SNR is low, so-called spike artifacts occur with the CS algorithm used in the present work. However, it was shown in an additional subsection that these artifacts can be reduced using a CS-based post processing algorithm. Thus, CS might help overcome limitations with time consuming 19F CSI experiments. Chapter 7 deals with a novel technique to quantify the B+1 profile of an MR coil. It was shown that, using a specific application scheme of off resonant pulses, Bloch-Siegert (BS)-based B+1 mapping can be enabled using a Carr Purcell Meiboom Gill (CPMG)-based TSE sequence. A fast acquisition of the data necessary for B+1 mapping was thus enabled. In the future, the application of BS-CPMG-TSE B+1 mapping to improve quantification using 19F MR could therefore be possible.}, subject = {Kernspintomografie}, language = {en} }