@phdthesis{Ifflaender2021, author = {Iffl{\"a}nder, Lukas}, title = {Attack-aware Security Function Management}, doi = {10.25972/OPUS-22421}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224211}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Over the last decades, cybersecurity has become an increasingly important issue. Between 2019 and 2011 alone, the losses from cyberattacks in the United States grew by 6217\%. At the same time, attacks became not only more intensive but also more and more versatile and diverse. Cybersecurity has become everyone's concern. Today, service providers require sophisticated and extensive security infrastructures comprising many security functions dedicated to various cyberattacks. Still, attacks become more violent to a level where infrastructures can no longer keep up. Simply scaling up is no longer sufficient. To address this challenge, in a whitepaper, the Cloud Security Alliance (CSA) proposed multiple work packages for security infrastructure, leveraging the possibilities of Software-defined Networking (SDN) and Network Function Virtualization (NFV). Security functions require a more sophisticated modeling approach than regular network functions. Notably, the property to drop packets deemed malicious has a significant impact on Security Service Function Chains (SSFCs)—service chains consisting of multiple security functions to protect against multiple at- tack vectors. Under attack, the order of these chains influences the end-to-end system performance depending on the attack type. Unfortunately, it is hard to predict the attack composition at system design time. Thus, we make a case for dynamic attack-aware SSFC reordering. Also, we tackle the issues of the lack of integration between security functions and the surrounding network infrastructure, the insufficient use of short term CPU frequency boosting, and the lack of Intrusion Detection and Prevention Systems (IDPS) against database ransomware attacks. Current works focus on characterizing the performance of security functions and their behavior under overload without considering the surrounding infrastructure. Other works aim at replacing security functions using network infrastructure features but do not consider integrating security functions within the network. Further publications deal with using SDN for security or how to deal with new vulnerabilities introduced through SDN. However, they do not take security function performance into account. NFV is a popular field for research dealing with frameworks, benchmarking methods, the combination with SDN, and implementing security functions as Virtualized Network Functions (VNFs). Research in this area brought forth the concept of Service Function Chains (SFCs) that chain multiple network functions after one another. Nevertheless, they still do not consider the specifics of security functions. The mentioned CSA whitepaper proposes many valuable ideas but leaves their realization open to others. This thesis presents solutions to increase the performance of single security functions using SDN, performance modeling, a framework for attack-aware SSFC reordering, a solution to make better use of CPU frequency boosting, and an IDPS against database ransomware. Specifically, the primary contributions of this work are: • We present approaches to dynamically bypass Intrusion Detection Systems (IDS) in order to increase their performance without reducing the security level. To this end, we develop and implement three SDN-based approaches (two dynamic and one static). We evaluate the proposed approaches regarding security and performance and show that they significantly increase the performance com- pared to an inline IDS without significant security deficits. We show that using software switches can further increase the performance of the dynamic approaches up to a point where they can eliminate any throughput drawbacks when using the IDS. • We design a DDoS Protection System (DPS) against TCP SYN flood at tacks in the form of a VNF that works inside an SDN-enabled network. This solution eliminates known scalability and performance drawbacks of existing solutions for this attack type. Then, we evaluate this solution showing that it correctly handles the connection establishment and present solutions for an observed issue. Next, we evaluate the performance showing that our solution increases performance up to three times. Parallelization and parameter tuning yields another 76\% performance boost. Based on these findings, we discuss optimal deployment strategies. • We introduce the idea of attack-aware SSFC reordering and explain its impact in a theoretical scenario. Then, we discuss the required information to perform this process. We validate our claim of the importance of the SSFC order by analyzing the behavior of single security functions and SSFCs. Based on the results, we conclude that there is a massive impact on the performance up to three orders of magnitude, and we find contradicting optimal orders for different workloads. Thus, we demonstrate the need for dynamic reordering. Last, we develop a model for SSFC regarding traffic composition and resource demands. We classify the traffic into multiple classes and model the effect of single security functions on the traffic and their generated resource demands as functions of the incoming network traffic. Based on our model, we propose three approaches to determine optimal orders for reordering. • We implement a framework for attack-aware SSFC reordering based on this knowledge. The framework places all security functions inside an SDN-enabled network and reorders them using SDN flows. Our evaluation shows that the framework can enforce all routes as desired. It correctly adapts to all attacks and returns to the original state after the attacks cease. We find possible security issues at the moment of reordering and present solutions to eliminate them. • Next, we design and implement an approach to load balance servers while taking into account their ability to go into a state of Central Processing Unit (CPU) frequency boost. To this end, the approach collects temperature information from available hosts and places services on the host that can attain the boosted mode the longest. We evaluate this approach and show its effectiveness. For high load scenarios, the approach increases the overall performance and the performance per watt. Even better results show up for low load workloads, where not only all performance metrics improve but also the temperatures and total power consumption decrease. • Last, we design an IDPS protecting against database ransomware attacks that comprise multiple queries to attain their goal. Our solution models these attacks using a Colored Petri Net (CPN). A proof-of-concept implementation shows that our approach is capable of detecting attacks without creating false positives for benign scenarios. Furthermore, our solution creates only a small performance impact. Our contributions can help to improve the performance of security infrastructures. We see multiple application areas from data center operators over software and hardware developers to security and performance researchers. Most of the above-listed contributions found use in several research publications. Regarding future work, we see the need to better integrate SDN-enabled security functions and SSFC reordering in data center networks. Future SSFC should discriminate between different traffic types, and security frameworks should support automatically learning models for security functions. We see the need to consider energy efficiency when regarding SSFCs and take CPU boosting technologies into account when designing performance models as well as placement, scaling, and deployment strategies. Last, for a faster adaptation against recent ransomware attacks, we propose machine-assisted learning for database IDPS signatures.}, subject = {Software-defined networking}, language = {en} } @phdthesis{Milenkoski2016, author = {Milenkoski, Aleksandar}, title = {Evaluation of Intrusion Detection Systems in Virtualized Environments}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141846}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Virtualization allows the creation of virtual instances of physical devices, such as network and processing units. In a virtualized system, governed by a hypervisor, resources are shared among virtual machines (VMs). Virtualization has been receiving increasing interest as away to reduce costs through server consolidation and to enhance the flexibility of physical infrastructures. Although virtualization provides many benefits, it introduces new security challenges; that is, the introduction of a hypervisor introduces threats since hypervisors expose new attack surfaces. Intrusion detection is a common cyber security mechanism whose task is to detect malicious activities in host and/or network environments. This enables timely reaction in order to stop an on-going attack, or to mitigate the impact of a security breach. The wide adoption of virtualization has resulted in the increasingly common practice of deploying conventional intrusion detection systems (IDSs), for example, hardware IDS appliances or common software-based IDSs, in designated VMs as virtual network functions (VNFs). In addition, the research and industrial communities have developed IDSs specifically designed to operate in virtualized environments (i.e., hypervisorbased IDSs), with components both inside the hypervisor and in a designated VM. The latter are becoming increasingly common with the growing proliferation of virtualized data centers and the adoption of the cloud computing paradigm, for which virtualization is as a key enabling technology. To minimize the risk of security breaches, methods and techniques for evaluating IDSs in an accurate manner are essential. For instance, one may compare different IDSs in terms of their attack detection accuracy in order to identify and deploy the IDS that operates optimally in a given environment, thereby reducing the risks of a security breach. However, methods and techniques for realistic and accurate evaluation of the attack detection accuracy of IDSs in virtualized environments (i.e., IDSs deployed as VNFs or hypervisor-based IDSs) are lacking. That is, workloads that exercise the sensors of an evaluated IDS and contain attacks targeting hypervisors are needed. Attacks targeting hypervisors are of high severity since they may result in, for example, altering the hypervisors's memory and thus enabling the execution of malicious code with hypervisor privileges. In addition, there are no metrics and measurement methodologies for accurately quantifying the attack detection accuracy of IDSs in virtualized environments with elastic resource provisioning (i.e., on-demand allocation or deallocation of virtualized hardware resources to VMs). Modern hypervisors allow for hotplugging virtual CPUs and memory on the designated VM where the intrusion detection engine of hypervisor-based IDSs, as well as of IDSs deployed as VNFs, typically operates. Resource hotplugging may have a significant impact on the attack detection accuracy of an evaluated IDS, which is not taken into account by existing metrics for quantifying IDS attack detection accuracy. This may lead to inaccurate measurements, which, in turn, may result in the deployment of misconfigured or ill-performing IDSs, increasing the risk of security breaches. This thesis presents contributions that span the standard components of any system evaluation scenario: workloads, metrics, and measurement methodologies. The scientific contributions of this thesis are: A comprehensive systematization of the common practices and the state-of-theart on IDS evaluation. This includes: (i) a definition of an IDS evaluation design space allowing to put existing practical and theoretical work into a common context in a systematic manner; (ii) an overview of common practices in IDS evaluation reviewing evaluation approaches and methods related to each part of the design space; (iii) and a set of case studies demonstrating how different IDS evaluation approaches are applied in practice. Given the significant amount of existing practical and theoretical work related to IDS evaluation, the presented systematization is beneficial for improving the general understanding of the topic by providing an overview of the current state of the field. In addition, it is beneficial for identifying and contrasting advantages and disadvantages of different IDS evaluation methods and practices, while also helping to identify specific requirements and best practices for evaluating current and future IDSs. An in-depth analysis of common vulnerabilities of modern hypervisors as well as a set of attack models capturing the activities of attackers triggering these vulnerabilities. The analysis includes 35 representative vulnerabilities of hypercall handlers (i.e., hypercall vulnerabilities). Hypercalls are software traps from a kernel of a VM to the hypervisor. The hypercall interface of hypervisors, among device drivers and VM exit events, is one of the attack surfaces that hypervisors expose. Triggering a hypercall vulnerability may lead to a crash of the hypervisor or to altering the hypervisor's memory. We analyze the origins of the considered hypercall vulnerabilities, demonstrate and analyze possible attacks that trigger them (i.e., hypercall attacks), develop hypercall attack models(i.e., systematized activities of attackers targeting the hypercall interface), and discuss future research directions focusing on approaches for securing hypercall interfaces. A novel approach for evaluating IDSs enabling the generation of workloads that contain attacks targeting hypervisors, that is, hypercall attacks. We propose an approach for evaluating IDSs using attack injection (i.e., controlled execution of attacks during regular operation of the environment where an IDS under test is deployed). The injection of attacks is performed based on attack models that capture realistic attack scenarios. We use the hypercall attack models developed as part of this thesis for injecting hypercall attacks. A novel metric and measurement methodology for quantifying the attack detection accuracy of IDSs in virtualized environments that feature elastic resource provisioning. We demonstrate how the elasticity of resource allocations in such environments may impact the IDS attack detection accuracy and show that using existing metrics in such environments may lead to practically challenging and inaccurate measurements. We also demonstrate the practical use of the metric we propose through a set of case studies, where we evaluate common conventional IDSs deployed as VNFs. In summary, this thesis presents the first systematization of the state-of-the-art on IDS evaluation, considering workloads, metrics and measurement methodologies as integral parts of every IDS evaluation approach. In addition, we are the first to examine the hypercall attack surface of hypervisors in detail and to propose an approach using attack injection for evaluating IDSs in virtualized environments. Finally, this thesis presents the first metric and measurement methodology for quantifying the attack detection accuracy of IDSs in virtualized environments that feature elastic resource provisioning. From a technical perspective, as part of the proposed approach for evaluating IDSsthis thesis presents hInjector, a tool for injecting hypercall attacks. We designed hInjector to enable the rigorous, representative, and practically feasible evaluation of IDSs using attack injection. We demonstrate the application and practical usefulness of hInjector, as well as of the proposed approach, by evaluating a representative hypervisor-based IDS designed to detect hypercall attacks. While we focus on evaluating the capabilities of IDSs to detect hypercall attacks, the proposed IDS evaluation approach can be generalized and applied in a broader context. For example, it may be directly used to also evaluate security mechanisms of hypervisors, such as hypercall access control (AC) mechanisms. It may also be applied to evaluate the capabilities of IDSs to detect attacks involving operations that are functionally similar to hypercalls, for example, the input/output control (ioctl) calls that the Kernel-based Virtual Machine (KVM) hypervisor supports. For IDSs in virtualized environments featuring elastic resource provisioning, our approach for injecting hypercall attacks can be applied in combination with the attack detection accuracy metric and measurement methodology we propose. Our approach for injecting hypercall attacks, and our metric and measurement methodology, can also be applied independently beyond the scenarios considered in this thesis. The wide spectrum of security mechanisms in virtualized environments whose evaluation can directly benefit from the contributions of this thesis (e.g., hypervisor-based IDSs, IDSs deployed as VNFs, and AC mechanisms) reflects the practical implication of the thesis.}, subject = {Eindringerkennung}, language = {en} }