@inproceedings{VivianiLutz1979, author = {Viviani, A. and Lutz, Werner K.}, title = {Modulation of the in vivo covalent binding of the carcinogen benzo(a)pyrene to rat liver DNA by selective induction of microsomal and nuclear aryl hydrocarbon hydroxylase activity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-80132}, year = {1979}, abstract = {The influence of microsomal (mAHH) and nuclear (nAHH) aryl hydrocarbon hydroxylase activity on the covalent binding of t:titiated benzo(a)pyrene to rat liver DNA was evaluated in vivo. Induction ofmAHH was obtained after phenobarbitone treatment (180\% of control), which increased DNA binding to 210\%, but left the nAHH unchanged. mAHH and nAHH were slightly indilced with dieldrin (130\% and 120\%), but the binding remairred unchanged. The increasing effect of mAHlt as weil as the possibly decreasing effect of nAHH induction on the binding became obvious when the data of 11 individual rats were used to solve the equation Binding = aX(mAHH) + bX(nAHH) + c. Multiple linear regression analysis resulted in positive values for a and c, a negative value for b, and a multiple correlation coefficient R = 0.82. An influence of other enzymes involved in the metabolism of benzo(a)pyrene cannot be excluded. The Study shows clearly that the binding of a foreign compound to DNA in vivo is not only dependent on microsomal enzyme activities but also on nuclear activities even if the latter are considerably lower than those of mic'rosomes.}, subject = {DNA}, language = {en} } @phdthesis{Ates2010, author = {Ates, Ebru}, title = {Analytische und Effektor-Studien von N-Acyl-Ethanolaminphosphaten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54369}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Bei N-Acyl-Ethanolaminphosphaten handelt es sich um eine bislang wenig untersuchte Klasse polarer Substanzen, deren Erforschung aufgrund ihrer strukturellen Analogie zu apolaren, physiologisch wirksamen N-Acyl-Ethanolaminen von Interesse ist. Zu bear-beiten waren analytische Fragestellungen, die auch synthetische Aufgaben beinhalteten, wie Methodenentwicklung und Versuche zur Erfassung von N-Acyl-Ethanolamin-phosphaten in ausgew{\"a}hlten Lebensmitteln sowie strukturelle Studien zur „Bioaktivit{\"a}t" der Verbindungen. Erstes Ziel der vorliegenden Arbeit war es demzufolge, eine geeig-nete Methode f{\"u}r deren qualitative und quantitative Analytik zu entwickeln. Gleichzei-tig wurden ausgew{\"a}hlte N-Acyl-Ethanolaminphosphate synthetisiert. Aufgrund des literaturbekannten Vorkommens von N-Acyl-Ethanolaminen in Wein wurden f{\"u}r die Lebensmitteluntersuchungen fermentierte Produkte, d.h. drei verschie-dene Sake (Japanischer Reiswein) und ein fermentierter Rotkohl verwendet. Parallel zu diesen Untersuchungen erfolgten auch Studien zur Stabilit{\"a}t der N-Acyl-Ethanolamin-phosphate. Versuchsreihen zur {\"U}berpr{\"u}fung potentieller „Bioaktivit{\"a}t" umfassten Studien mit al-kalischer Phosphatase, PhospholipaseA2, Lipoxygenase, Xanthinoxidase, β-N-Acetyl-hexosaminidase und dem Cannabinoidrezeptor-1.}, subject = {Aminoethanolderivate}, language = {de} } @phdthesis{Chari2009, author = {Chari, Ashwin}, title = {The Reaction Mechanism of Cellular U snRNP Assembly}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40804}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Macromolecular complexes, also termed molecular machines, facilitate a large spectrum of biological reactions and tasks crucial to the survival of cells. These complexes are composed of either protein only, or proteins bound to nucleic acids (DNA or RNA). Prominent examples for each class are the proteosome, the nucleosome and the ribosome. How such units are assembled within the context of a living cell is a central question in molecular biology. Earlier studies had indicated that even very large complexes such as ribosomes could be reconstituted from purified constituents in vitro. The structural information required for the formation of macromolecular complexes, hence, lies within the subunits itself and, thus, allow for self- assembly. However, increasing evidence suggests that in vivo many macromolecular complexes do not form spontaneously but require assisting factors ("assembly chaperones") for their maturation. In this thesis the assembly of RNA-protein (RNP) complexes has been studied by a combination of biochemical and structural approaches. A resourceful model system to study this process is the biogenesis pathway of the uridine-rich small nuclear ribonucleoproteins (U snRNPs) of the spliceosome. This molecular machine catalyzes pre-mRNA splicing, i.e. the removal of non-coding introns and the joining of coding exons to functional mRNA. The composition and architecture of U snRNPs is well defined, also, the nucleo-cytoplasmic transport events enabling the formation of these particles in vivo have been analyzed in some detail. Furthermore, recent studies suggest that the formation of U snRNPs in vivo is mediated by an elaborate assembly machinery consisting of protein arginine methyltransferase (PRMT5)- and survival motor neuron (SMN)-complexes. The elucidation of the reaction mechanism of cellular U snRNP assembly would serve as a paradigm for our understanding of how RNA-protein complexes are formed in the cellular environment. The following key findings were obtained as part of this study: 1) Efforts were made to establish a full inventory of the subunits of the SMN-complex. This was achieved by the biochemical definition and characterization of an atypical component of this complex, the unrip protein. This protein is associated with the SMN-complex exclusively in the cytoplasm and influences its subcellular localization. 2) With a full inventory of the components in hand, the architecture of the SMN-complex was defined on the basis of an interaction map of all subunits. This study elucidated that the proteins SMN, Gemin7 and Gemin8 form a backbone, onto which the remaining subunits adhere in a modular manner. 3) The two studies mentioned above formed the basis to elucidate the reaction mechanism of cellular U snRNP assembly. Initially, an early phase in the SMN-assisted formation of U snRNPs was analyzed. Two subunits of the U7 snRNP (LSm10 and 11) were found to interact with the PRMT5-complex, without being methylated. This report suggests that the stimulatory role of the PRMT5-complex is independent of its methylation activity. 4) Key reaction intermediates in U snRNP assembly were found and characterized by a combination of biochemistry and structural studies. Initially, a precursor to U snRNPs with a sedimentation coefficient of 6S is formed by the pICln subunit of the PRMT5-complex and Sm proteins. This intermediate was shown to constitute a kinetic trap in the U snRNP assembly reaction. Progression towards the assembled U snRNP depends on the activity of the SMN-complex, which acts as a catalyst. The formation of U snRNPs is shown to be structurally similar to the way clamps are deposited onto DNA to tether poorly processive polymerases. 5) The human SMN-complex is composed of several subunits. However, it is unknown whether all subunits of this entity are essential for U snRNP assembly. A combination of bioinformatics and biochemistry was applied to tackle this question. By mining databases containing whole-genome assemblies, the SMN-Gemin2 heterodimer is recognized as the most ancestral form of the SMN-complex. Biochemical purification of the Drosophila melanogaster SMN-complex reveals that this complex is composed of the same two subunits. Furthermore, evidence is provided that the SMN-Gemin2 heterodimer is necessary and sufficient to promote faithful U snRNP assembly. Future studies will adress further details in the reaction mechanism of cellular U snRNP assembly. The results obtained in this thesis suggest that the SMN and Gemin2 subunits are sufficient to promote U snRNP formation. What then is the function of the remaining subunits of the SMN-complex? The reconstitution schemes established in this thesis will be instrumental to address this question. Furthermore, additional mechanistic insights into the U snRNP assembly reaction will require the elucidation of structures of the assembly machinery trapped at various states. The prerequisite for these structural studies, the capability to generate homogenous complexes in sufficient amounts, has been accomplished in this thesis.}, subject = {Small nuclear RNP}, language = {en} }