@article{UrlaubKaiserScherf‐Claveletal.2021, author = {Urlaub, Jonas and Kaiser, Reinhard P. and Scherf-Clavel, Oliver and Bolm, Carsten and Holzgrabe, Ulrike}, title = {Investigation of isomerization of dexibuprofen in a ball mill using chiral capillary electrophoresis}, series = {Electrophoresis}, volume = {42}, journal = {Electrophoresis}, number = {17-18}, doi = {10.1002/elps.202000307}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225852}, pages = {1790 -- 1799}, year = {2021}, abstract = {Besides the racemate, the S-enantiomer of ibuprofen (Ibu) is used for the treatment of inflammation and pain. Since the configurational stability of S-Ibu in solid state is of interest, it was studied by means of ball milling experiments. For the evaluation of the enantiomeric composition, a chiral CE method was developed and validated according to the ICH guideline Q2(R1). The addition of Mg\(^{2+}\), Ca\(^{2+}\), or Zn\(^{2+}\) ions to the background electrolyte (BGE) was found to improve Ibu enantioresolution. Chiral separation of Ibu enantiomers was achieved on a 60.2 cm (50.0 cm effective length) x 75 μm fused-silica capillary using a background electrolyte (BGE) composed of 50 mM sodium acetate, 10 mM magnesium acetate tetrahydrate, and 35 mM heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) as chiral selector. The quantification of R-Ibu in the mixture was performed using the normalization procedure. Linearity was evaluated in the range of 0.68-5.49\% R-Ibu (R\(^{2}\) = 0.999), recovery was found to range between 97 and 103\%, the RSD of intra- and interday precision below 2.5\%, and the limit of quantification for R- in S-Ibu was calculated to be 0.21\% (extrapolated) and 0.15\% (dilution of racemic ibuprofen), respectively. Isomerization of S-Ibu was observed under basic conditions by applying long milling times and high milling frequencies.}, language = {en} } @phdthesis{Kuehnreich2016, author = {K{\"u}hnreich, Raphael}, title = {Development and Validation of Methods for Impurity Profiling of Amino Acids}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145718}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The requirements for the impurity profiling of substances for pharmaceutical use have become greater over time. They can be accomplished by the use of modern instrumental analysis techniques, which have been evolved in the last decades. New types of columns with HILIC, mixed-mode and chiral stationary phases are suitable for the separation of all kinds of substances mixtures, that were previously hardly possible with the use of common reversed phase columns. Modern, almost universal detectors like CAD, ELSD and CNLSD can be applied for a sensitive detection of substances without a chromophore. However, in addition to some small individual disadvantages to these methods, the costs are high and applications are still kind of rare. Thus, the introduction of these devices at a broader level has not yet taken place. While this presumably will change over time, there is a need for methods that enable the impurity profiling of challenging substances with widespread analytics devices. Methionine is a substance with hydrophobic and hydrophilic impurities. With the help of a mixed-mode stationary phase, which is a combination of a reversed phase and a strong cationic exchanger, the separation of all putative impurities was found possible with good sensitivity and selectivity. The method requires apart from the column only standard isocratic HPLC equipment and was successfully validated. The evaluation of the enantiomeric purity of amino acids is challenging. Two approaches were made. The first method utilizes CE by means of in-capillary derivation with OPA and the subsequent separation with a cyclodextrin. With the use of OPA/NAC and γ-cyclodextrin, a simple and cost-effective method for the indirect enantioseparation of 16 amino acids was developed. With the second approach, racemic amino acids can be analyzed with HPLC and in-needle derivatization. For this, different columns and chiral thiols were evaluated and the chromatographic parameters were optimized. A method with OPA/NIBLC, a pentafluorophenyl column made the enantioseparation of 17 amino acids feasible. A LOQ of the minor enantiomer down to 0.04 \% can be achieved with UV spectrophotometric detection. A similar method was developed for impurity profiling of L-amino acids. This can be used alternatively for the amino acid analysis performed by the European Pharmacopoeia. A simple, robust, precise and accurate method for the evaluation of impurities in glyceryl trinitrate solution was developed and validated. The four impurities of glyceryl trinitrate are separated by means of an acetonitrile-water gradient and the assay for this substance is also possible.}, subject = {Aminos{\"a}uren}, language = {en} } @phdthesis{Borst2011, author = {Borst, Claudia}, title = {Kapillarelektrophoretische Reinheitsanalytik verschiedener Arzneistoffe des Europ{\"a}ischen Arzneibuchs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56243}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Kapillarelektophorese (CE), deren Trennprinzip auf der Wanderung geladener Teilchen im elektrischen Feld basiert, ist eine Methode, die in verschiedenen Techniken angewandt werden kann. Sowohl die w{\"a}ssrige Kapillarzonenelektrophorese (CZE) als auch die wasserfreie CE (NACE), aber auch die elektrokinetische Chromatographie mittels Mikroemulsion (MEEKC) wurden in dieser Arbeit f{\"u}r die Reinheitsanalytik der im Europ{\"a}ischen Arzneibuch beschriebenen Wirkstoffe Ethambutol, Quetiapin, Ephedrin sowie Levodopa und deren jeweils strukturverwandter Substanzen benutzt. Der Wirkstoff Ethambutol wird in der (S,S)-Form verwendet, die im Ph. Eur. 7 als Dihydrochlorid aufgef{\"u}hrt ist. Um eine Trennmethode f{\"u}r (S,S)-Ethambutol, sein Enantiomer und die achirale meso-Verbindung entwickeln zu k{\"o}nnen, wurden die beiden stereoisomeren Verunreinigungen aus 2-Amino-1-butanol und Diethyloxalat synthetisiert. Zur Trennung dieser drei Ethambutol-Isomere wurde CZE als Methode gew{\"a}hlt. In saurem Phosphatpuffer musste eine hohe Probenkonzentration von 1 mg/ml verwendet werden, um die Substanzen mit UV detektieren zu k{\"o}nnen (λ: 200 nm). In alkalischem Tetraboratpuffer war das Chromophor dank der freien Elektronenpaare der Stickstoff-Molek{\"u}le besser ausgepr{\"a}gt und die Intensit{\"a}t der Peaks deutlich intensiver. Als chirale Selektoren wurden die nativen α-, β- und γ-Cyclodextine (CDs) und verschiedene derivatisierte β-CDs eingesetzt. Die Methode wurde vielfach in Bezug auf Molarit{\"a}t und pH-Wert der Puffer, Konzentration der verschiedenen chiralen Selektoren, Spannung und Temperatur modifiziert. Jedoch konnte keine Trennung der Stereoisomere erreicht werden. Eine CD-modifizierte MEEKC-Methode wurde herangezogen, um die Racemate der Aminos{\"a}uren Dopa, Methyldopa, Tyrosin und Phenylalanin voneinander zu trennen. Dazu wurde eine Mikroemulsion (ME) aus Ethylacetat, SDS, 1-Butanol, Phosphatpuffer, sulf. β-CD und, wenn n{\"o}tig, aus dem organischen Modifier 2-Propanol eingesetzt. F{\"u}r jede DL-Aminos{\"a}ure wurde die Zusammensetzung der ME als auch die Ger{\"a}teeinstellungen (Spannung, Temperatur) optimiert. Die Trennung von DL-Dopa konnte ohne Zugabe eines organischen Modifiers durchgef{\"u}hrt werden. Auf Grundlage dieser individuellen Methoden wurden zwei CD-modifizierte MEEKC-Methoden entwickelt, mit denen alle vier untersuchten Racemate getrennt werden konnten. Die abschließende Validierung in Bezug auf Wiederholpr{\"a}zision (Aufl{\"o}sung, Migrationszeiten, Verh{\"a}ltnis der korrigierten Peakfl{\"a}chen und Anzahl der theoretischen B{\"o}den) und Detektionsgrenzen zeigte, dass die Methoden pr{\"a}zise Ergebnisse liefern. Die Technik der MEEKC wurde auch zur Trennung von Ephedrin-Derivaten genutzt. Wedig et al. konnten die Racemate von Ephedrin, Pseudoephedrin, N-Methylephedrin und Norephedrin mit einer HDAS-β-CD-modifizierten CZE-Methode in einem Lauf basislinientrennen, indem ein 50 mM Phosphatpuffer, pH 3,0 als HGE eingesetzt wurde. Aus diesem HGE und den organischen Bestandteilen, die zur Trennung der Aminos{\"a}uren f{\"u}hrten, wurde eine ME hergestellt. Entgegen der Methode von Wedig et al. konnte mittels HDAS-β-CD keine zufriedenstellende Trennleistung erreicht werden. Durch Austausch des chiralen Selektors gegen sulf. β-CD und Modifizierung des Phosphatpuffers in Ionenst{\"a}rke und pH-Wert konnte f{\"u}r alle vier Epedrin-Derivate eine Basislinientrennung erzielt werden. Diese MEEKC-Methode wurde auf weitere Ephedrin-Derivate angewandt, wodurch das racemische 2-(Dibutylamino)-1-phenyl-1-propanol partiell, die Racemate von Adrenalin, 2-Amino-1-phenylethanol und Diethylnorephedrin vollst{\"a}ndig voneinander getrennt werden konnten. W{\"a}hrend mit der HDAS-β-CD-modifizierten CZE-Methode alle vier Ephedrin-Derivaten in einem Lauf getrennt werden konnten, hat die MEEKC-Methode den Vorteil mit dem kosteng{\"u}nstigeren sulf. β-CD auszukommen. Schlussendlich wurde eine Reinheitsanalytik von Quetiapin und seinen verwandten Substanzen Quetiapindesethanol, Quetiapin-N-Oxid und Quetiapinlactam entwickelt. Da Quetiapinlactam fast ausschließlich in organischen L{\"o}sungsmitteln l{\"o}slich ist, sollte eine wasserfreie CE-Methode (NACE) eingesetzt werden. Zwar konnte eine Methode entwickelt werden, deren HGE aus Methanol, Acetonitril, Ammoniumacetat und Essigs{\"a}ure bestand, und mit der Quetiapin und seine drei verwandten Substanzen sehr gut getrennt werden konnten. Allerdings konnte sie aufgrund von Stromabbr{\"u}chen nicht validiert werden. Alternativ wurde eine w{\"a}ssrige, gut reproduzierbare CZE-Methode gefunden, deren Elektrolytl{\"o}sung aus einem 80 mM Phosphatpuffer, pH 4.0 bestand. Aufgrund der Wasserunl{\"o}slichkeit von Quetiapinlactam konnten so nur Quetiapin und die Verunreinigungen Quetiapindesethanol und Quetiapin-N-Oxid erfasst werden. Abschließend wurde die CZE-Methode validiert, wodurch die hohe Pr{\"a}zision der ermittelten Werte gezeigt werden konnte.}, subject = {Kapillarelektrophorese}, language = {de} } @phdthesis{Bitar2007, author = {Bitar, Yaser}, title = {Entwicklung und Validierung chromatographischer bzw. elektrophoretischer Methoden zur Reinheitspr{\"u}fung von Arzneistoffen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25584}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Die Reinheit ist ein wichtigstes Kriterium f{\"u}r die Qualit{\"a}tssicherung von Arzneistoffen und Arzneistoffzubereitungen. Es war Gegenstand dieser Arbeit, anhand konkreter Problemstellungen die Entwicklung und Validierung chromatographischer und elektrophoretischer Methoden zur Reinheitspr{\"u}fung von Arzneistoffen und Arzneimitteln darzustellen. Die Arbeit gliedert sich in zwei große Teilgebiete. Im ersten Abschnitt wurden validierte HPLC- und CE-Methoden zur Pr{\"u}fung auf verwandte Substanzen von Atropinsulfat beschrieben. Der zweite Teil der Arbeit besch{\"a}ftigte sich mit der chiralen Trennung sowie der Bestimmung der Enantiomerenreinheit von Arzneistoffen mittels cyclodextrin-modifizierter Kapillarelektrophorese. Im Rahmen der Aktualisierung der im Europ{\"a}ischen Arzneibuch PhEur 6.0 bestehenden ionenpaarchromatographischen HPLC-Methode zur Pr{\"u}fung auf verwandte Substanzen von Atropinsulfat wurde alternativ sowohl eine HPLC-Methode ohne Einsatz eines Ionenpaarreagenzes als auch eine CE-Methode entwickelt und validiert. Da die Verunreinigungen von Atropinsulfat Gemische aus sauren und basischen Komponenten sind, wird im Arzneibuch die Ionenpaarchromatographie zur Reinheitsbestimmung von Atropinsulfat verwendet. Dieses Verfahren bringt allerdings lange {\"A}quilibrierungszeiten und schlechte Reproduzierbarkeiten der Analysenergebnisse mit sich. Als station{\"a}re Phase wurde hier ein RP-18-Material mit polarem Endcapping verwendet, um die Zersetzungsprodukte und verwandte Alkaloide in einem kurzen Zeitraum von dem Arzneistoff Atropinsulfat zutrennen. Als mobile Phase wurde eine Mischung aus Acetonitril und Phosphatpuffer pH 2,5 eingesetzt. Die Nutzung eines Gradienten war trotz des polaren Endcappings n{\"o}tig, um sowohl hinreichende Retentionen der protonierten basischen Komponenten zu erhalten als auch vollst{\"a}ndige Basislinientrennung aller Verunreinigungen zu erzielen. Die HPLC-Methode wurde im Hinblick auf die Reinheitsbestimmung von Atropinsulfat validiert. Die robuste Methode vermag eine pr{\"a}zise und richtige quantitative Bestimmung aller Verunreinigungen des Atropinsulfates mit Hilfe eines externen Standards von Tropas{\"a}ure zu liefern. Diese HPLC-Methode wurde gem{\"a}ß Richtlinie Q1A(R2) der Internationalen Konferenz der Harmonisierung (ICH), zu den Stabilit{\"a}tsuntersuchungen am Fertigarzneimittel Atropinsulfat-Augentropfen 0,5 und 2,0 \% eingesetzt. Diese Untersuchungen dienten der Aufkl{\"a}rung des durch den Wirkstoffabbau verursachten Defizits in der Massebilanz der Arzneiform zwischen dem Wirkstoff Atropinsulfat und seinen Neben- und Abbauprodukten im Verlauf der Stabilit{\"a}tstests. In Langzeitstabilit{\"a}tsuntersuchungen unter verschiedenen klimatischen Bedingungen hat sich gezeigt, dass die Stabilit{\"a}t des Wirkstoffes Atropinsulfat in der Arzneiform Augentropfen nicht von der Dosierung des Atropinsulfates sondern von Lagerbedingungen abh{\"a}ngig ist. Der Wirkstoffverlust der Atropinsulfat-Augentropfen betr{\"a}gt 0,7 \% pro Jahr unter den Bedingungen der Klimazone 1 und 1,05 \% pro Jahr unter der Klimazone 2. Die Summe der Verunreinigungen in beiden Lagerbedingungen liegen unter dem Grenzwert der Summe aller Verunreinigungen nach PhEur 6.0. Diese Erkenntnis aus den Stabilit{\"a}tsuntersuchungen zur Klimazonen 1 und 2 wird durch die Untersuchungsergebnisse der Arzneiform unter Klimazone 3 best{\"a}tigt. Die Studie zeigt, dass es f{\"u}r die Fertigarzneimittel "Atropinsulfat-Augentropfen 0,5 und 2,0 \%" Lagerhinweise auf der Verpackung geben muss. Im letzten Abschnitt des ersten Teils wurde zus{\"a}tzlich eine CE-Methode zur Reinheitspr{\"u}fung von Atropinsulfat entwickelt und validiert. Die elektrokinetische Chromatographie mit Mikroemulsionen (MEEKC) ist als CE-Trenntechnik in der Lage, nahezu alle Verunreinigungen von der Hauptkomponente Atropinsulfat zu trennen. Die Trennung erfolgt in einer unbeschichteten Quarzglaskapillare. Als {\"O}l-in-Wasser Mikroemulsionshintergrundelektrolyt werden 0,8 \% Octan als {\"O}lphase, 6,6 \% Butanol als Co-Tensid, 2,0 \% Isopropanol als organischer Modifier, 4,45 \% Natriumlaurylsulfat (SDS) als Tensid und 86,15 \% Boratpuffer (10 mM, pH 9,0) als w{\"a}ssrige Phase verwendet. Die Proben werden hydrodynamisch injiziert. Um die Analysenzeit zu verk{\"u}rzen, wird ein Spannungsgradient verwendet. Unter diesen optimierten elektrophoretischen Bedingungen sind die Verunreinigungen und Atropinsulfat basisliniengetrennt. Quantifiziert wird mittels des externen Standards Tropas{\"a}ure. Die MEEKC-Methode wurde im Hinblick auf quantitative Reinheitsbestimmung von Atropinsulfat validiert. Im Vergleich zur HPLC-Methode ergab die MEEKC-Methode deutlich bessere Peakformen und h{\"o}here Aufl{\"o}sungsfaktoren f{\"u}r die Peaks E, D und F, w{\"a}hrend sich bei der HPLC-Methode pr{\"a}zisere Reinheitsergebnisse bezogen auf ihre relativen Standardabweichungen ergab. Im zweiten Teil dieser Arbeit wurden analytische CE-Methoden zur Enantiomerentrennung von einigen chiralen Arzneistoffen und Substanzen unter Zusatz von Cyclodextrinen (CDs) und ihren Derivaten als chirale Selektoren untersucht. CD-modifizierte elektrokinetische Chromatographie mit Mikroemulsionen (CD-MEEKC) wurde zur Trennung der vier chiralen Tropa-Alkaloide Atropin, Scopolamin, Ipratropium und Homatropin verwendet. Der O/W-Mikroemulsion-HGE besteht aus 0,8 \% Octan, 6,6 \% Butanol, 2,0 \% SDS und 90,6 \% Boratpuffer (10 mM, pH 9,0). Enantiomerentrennung aller Tropan-Alkaloiden mit h{\"o}herer Aufl{\"o}sung und k{\"u}rzeren Migrationszeiten erfolgt durch Zugabe von Heptakis(2,6-di-O-methyl-6-sulfato)-ß-CD oder sulfatiertem ß-CD in einer Konzentration von 5 mM. Vorteil dieser CD-MEEKC-Methode im Vergleich zur CD-modifizierten CE-Methode war, dass die Scopolamin-Enantiomere aufgrund des verwendeten SDS-Mikroemulsion-HGEs getrennt werden konnte. Aziridine (1-5) geh{\"o}ren zu einer pharmakologischen Gruppe irreversibler Protease-Inhibitoren. Die biologische Testung von potenziellen Protease-Inhibitoren wird nur f{\"u}r die diastereromerenreinen Derivate durchgef{\"u}hrt. Zu diesem Zweck wurden CD-modifizierte CE-Methoden zur Enantiomeren- bzw. Diastereomerentrennung von Aziridin-Derivaten entwickelt. Robuste Basislinientrennungen werden unter Zusatz von Sulf-ß-CD im w{\"a}ssrigen Phosphatpuffer oder HDAS-ß-CD im wasserfreien sauren methanolischen HGE erzielt. Die w{\"a}ssrige CE-Methode wird nach ICH-Richtlinie Q2(R1) in Bezug auf die Diastereomerenreinheit von cis-Racemat validiert. Im Rahmen einer {\"U}berarbeitung der Monographie von Levodopa wurde die Polarimetrie zur Pr{\"u}fung auf optische Drehung durch eine chirale HPLC-Methode ersetzt. Enantiomerentrennung erfolgt mit einer RP-18-S{\"a}ule und einer Mischung aus Methanol und Wasser als mobile Phase, zu der Kupferacetat und N,N-Dimethyl-L-phenylalanin gegeben wird. Mit dieser Methode wurde D-Dopa auf 0,5 \% begrenzt. Zus{\"a}tzlich f{\"u}hrt diese Methode zu einer schlechten Peakform der Hauptkomponente und so zu einer unsicheren Limitierung von D-Dopa in Levopdopa durch den Fl{\"a}chenvergleich. Eine CD-modifizierte CE-Methode von Hoogmartens et al.182 wurde zur Enantiomerenreinheit von Levodopa optimiert und validiert. Mit Hilfe einer unbeschichteten Quarzglaskapillare und eines HGE von 20 mM Phosphatpuffer pH 2,5 und 10 mM Sulf-ß-CD konnte die Enantiomerentrennung mit h{\"o}herer Aufl{\"o}sung im Umkehrpolungsmode erzielt werden. Die Bestimmungsgrenze von D-Dopa betrug gem{\"a}ß der ICH-Richtlinie Q2(R1) 0,04 \% in Bezug auf den Gehalt von Levopdopa. Im letzten Abschnitt wurde an einem internationalen Ringversuch zur Enantiomerenreinheit von Timololmaleat mittels wasserfreier CE-Methode186 (NACE) teilgenommen. Die Durchf{\"u}hrung erfolgt mit der Testung einer Systemeignung sowie mit der Bestimmung des Gehalts an R-Timolol in vier S-Timolol-Proben. Die Beurteilung der Pr{\"a}zision sowie die Ringversuchstudie erfolgt durch die Ermittlung der statistischen Varianzen zwischen verschiedenen Laboratorien, Messtagen und Bestimmungen}, subject = {Reinheit }, language = {de} }