@article{UeceylerHomolaGonzalezetal.2014, author = {{\"U}{\c{c}}eyler, Nurcan and Homola, Gy{\"o}rgy A. and Gonz{\´a}lez, Hans Guerrero and Kramer, Daniela and Wanner, Christoph and Weidemann, Frank and Solymosi, L{\´a}szl{\´o} and Sommer, Claudia}, title = {Increased Arterial Diameters in the Posterior Cerebral Circulation in Men with Fabry Disease}, doi = {10.1371/journal.pone.0087054}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112614}, year = {2014}, abstract = {A high load of white matter lesions and enlarged basilar arteries have been shown in selected patients with Fabry disease, a disorder associated with an increased stroke risk. We studied a large cohort of patients with Fabry disease to differentially investigate white matter lesion load and cerebral artery diameters. We retrospectively analyzed cranial magnetic resonance imaging scans of 87 consecutive Fabry patients, 20 patients with ischemic stroke, and 36 controls. We determined the white matter lesion load applying the Fazekas score on fluid-attenuated inversion recovery sequences and measured the diameters of cerebral arteries on 3D-reconstructions of the time-of-flight-MR-angiography scans. Data of different Fabry patient subgroups (males - females; normal - impaired renal function) were compared with data of patients with stroke and controls. A history of stroke or transient ischemic attacks was present in 4/30 males (13\%) and 5/57 (9\%) females with Fabry disease, all in the anterior circulation. Only one man with Fabry disease showed confluent cerebral white matter lesions in the Fazekas score assessment (1\%). Male Fabry patients had a larger basilar artery (p<0.01) and posterior cerebral artery diameter (p<0.05) compared to male controls. This was independent of disease severity as measured by renal function and did not lead to changes in arterial blood flow properties. A basilar artery diameter of >3.2 mm distinguished between men with Fabry disease and controls (sensitivity: 87\%, specificity: 86\%, p<0.001), but not from stroke patients. Enlarged arterial diameters of the posterior circulation are present only in men with Fabry disease independent of disease severity.}, language = {en} } @article{WolfBraunHainingetal.2016, author = {Wolf, Karen and Braun, Attila and Haining, Elizabeth J. and Tseng, Yu-Lun and Kraft, Peter and Schuhmann, Michael K. and Gotru, Sanjeev K. and Chen, Wenchun and Hermanns, Heike M. and Stoll, Guido and Lesch, Klaus-Peter and Nieswandt, Bernhard}, title = {Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0147664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146399}, pages = {e0147664}, year = {2016}, abstract = {Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt\(^{-/-}\)) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt\(^{-/-}\) platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca\(^{2+}\) entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt\(^{-/-}\) platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt\(^{-/-}\) mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt\(^{-/-}\) mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization.}, language = {en} } @article{TuetuencueOlmaKunzeetal.2022, author = {T{\"u}t{\"u}nc{\"u}, Serdar and Olma, Manuel and Kunze, Claudia and Dietzel, Joanna and Schurig, Johannes and Fiessler, Cornelia and Malsch, Carolin and Haas, Tobias Eberhard and Dimitrijeski, Boris and Doehner, Wolfram and Hagemann, Georg and Hamilton, Frank and Honermann, Martin and Jungehulsing, Gerhard Jan and Kauert, Andreas and Koennecke, Hans-Christian and Mackert, Bruno-Marcel and Nabavi, Darius and Nolte, Christian H. and Reis, Joschua Mirko and Schmehl, Ingo and Sparenberg, Paul and Stingele, Robert and V{\"o}lzke, Enrico and Waldschmidt, Carolin and Zeise-Wehry, Daniel and Heuschmann, Peter U. and Endress, Matthias and Haeusler, Karl Georg}, title = {Off-label-dosing of non-vitamin K-dependent oral antagonists in AF patients before and after stroke: results of the prospective multicenter Berlin Atrial Fibrillation Registry}, series = {Journal of Neurology}, volume = {269}, journal = {Journal of Neurology}, number = {1}, issn = {1432-1459}, doi = {10.1007/s00415-021-10866-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266969}, pages = {470-480}, year = {2022}, abstract = {Aims We aimed to analyze prevalence and predictors of NOAC off-label under-dosing in AF patients before and after the index stroke. Methods The post hoc analysis included 1080 patients of the investigator-initiated, multicenter prospective Berlin Atrial Fibrillation Registry, designed to analyze medical stroke prevention in AF patients after acute ischemic stroke. Results At stroke onset, an off-label daily dose was prescribed in 61 (25.5\%) of 239 NOAC patients with known AF and CHA2DS2-VASc score ≥ 1, of which 52 (21.8\%) patients were under-dosed. Under-dosing was associated with age ≥ 80 years in patients on rivaroxaban [OR 2.90, 95\% CI 1.05-7.9, P = 0.04; n = 29] or apixaban [OR 3.24, 95\% CI 1.04-10.1, P = 0.04; n = 22]. At hospital discharge after the index stroke, NOAC off-label dose on admission was continued in 30 (49.2\%) of 61 patients. Overall, 79 (13.7\%) of 708 patients prescribed a NOAC at hospital discharge received an off-label dose, of whom 75 (10.6\%) patients were under-dosed. Rivaroxaban under-dosing at discharge was associated with age ≥ 80 years [OR 3.49, 95\% CI 1.24-9.84, P = 0.02; n = 19]; apixaban under-dosing with body weight ≤ 60 kg [OR 0.06, 95\% CI 0.01-0.47, P < 0.01; n = 56], CHA2DS2-VASc score [OR per point 1.47, 95\% CI 1.08-2.00, P = 0.01], and HAS-BLED score [OR per point 1.91, 95\% CI 1.28-2.84, P < 0.01]. Conclusion At stroke onset, off-label dosing was present in one out of four, and under-dosing in one out of five NOAC patients. Under-dosing of rivaroxaban or apixaban was related to old age. In-hospital treatment after stroke reduced off-label NOAC dosing, but one out of ten NOAC patients was under-dosed at discharge.}, language = {en} } @article{StrinitzPhamMaerzetal.2021, author = {Strinitz, Marc and Pham, Mirko and M{\"a}rz, Alexander G. and Feick, J{\"o}rn and Weidner, Franziska and Vogt, Marius L. and Essig, Fabian and Neugebauer, Hermann and Stoll, Guido and Schuhmann, Michael K. and Kollikowski, Alexander M.}, title = {Immune cells invade the collateral circulation during human stroke: prospective replication and extension}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {17}, issn = {1422-0067}, doi = {10.3390/ijms22179161}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284281}, year = {2021}, abstract = {It remains unclear if principal components of the local cerebral stroke immune response can be reliably and reproducibly observed in patients with acute large-vessel-occlusion (LVO) stroke. We prospectively studied a large independent cohort of n = 318 consecutive LVO stroke patients undergoing mechanical thrombectomy during which cerebral blood samples from within the occluded anterior circulation and systemic control samples from the ipsilateral cervical internal carotid artery were obtained. An extensive protocol was applied to homogenize the patient cohort and to standardize the procedural steps of endovascular sample collection, sample processing, and laboratory analyses. N = 58 patients met all inclusion criteria. (1) Mean total leukocyte counts were significantly higher within the occluded ischemic cerebral vasculature (I) vs. intraindividual systemic controls (S): +9.6\%, I: 8114/µL ± 529 vs. S: 7406/µL ± 468, p = 0.0125. (2) This increase was driven by neutrophils: +12.1\%, I: 7197/µL ± 510 vs. S: 6420/µL ± 438, p = 0.0022. Leukocyte influx was associated with (3) reduced retrograde collateral flow (R\(^2\) = 0.09696, p = 0.0373) and (4) greater infarct extent (R\(^2\) = 0.08382, p = 0.032). Despite LVO, leukocytes invade the occluded territory via retrograde collateral pathways early during ischemia, likely compromising cerebral hemodynamics and tissue integrity. This inflammatory response can be reliably observed in human stroke by harvesting immune cells from the occluded cerebral vascular compartment.}, language = {en} } @article{SchuhmannLanghauserKraftetal.2017, author = {Schuhmann, Michael K. and Langhauser, Friederike and Kraft, Peter and Kleinschnitz, Christoph}, title = {B cells do not have a major pathophysiologic role in acute ischemic stroke in mice}, series = {Journal of Neuroinflammation}, volume = {14}, journal = {Journal of Neuroinflammation}, number = {112}, doi = {10.1186/s12974-017-0890-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158155}, year = {2017}, abstract = {Background Lymphocytes have been shown to play an important role in the pathophysiology of acute ischemic stroke, but the properties of B cells remain controversial. The aim of this study was to unravel the role of B cells during acute cerebral ischemia using pharmacologic B cell depletion, B cell transgenic mice, and adoptive B cell transfer experiments. Methods Transient middle cerebral artery occlusion (60 min) was induced in wild-type mice treated with an anti-CD20 antibody 24 h before stroke onset, JHD\(^{-/-}\) mice and Rag1\(^{-/-}\) mice 24 h after adoptive B cell transfer. Stroke outcome was assessed at days 1 and 3. Infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain sections, and neurological scores were evaluated. The local inflammatory response was determined by real-time PCR and immunohistochemistry. Apoptosis was analyzed by TUNEL staining, and astrocyte activation was revealed using immunohistochemistry and Western blot. Results Pharmacologic depletion of B cells did not influence infarct volumes and functional outcome at day 1 after stroke. Additionally, lack of circulating B cells in JHD\(^{-/-}\) mice also failed to influence stroke outcome at days 1 and 3. Furthermore, reconstitution of Rag1\(^{-/-}\) mice with B cells had no influence on infarct volumes. Conclusion Targeting B cells in experimental stroke did not influence lesion volume and functional outcome during the acute phase. Our findings argue against a major pathophysiologic role of B cells during acute ischemic stroke.}, language = {en} } @article{SchuhmannKraftBieberetal.2019, author = {Schuhmann, Michael K. and Kraft, Peter and Bieber, Michael and Kollikowski, Alexander M. and Schulze, Harald and Nieswandt, Bernhard and Pham, Mirko and Stegner, David and Stoll, Guido}, title = {Targeting platelet GPVI plus rt-PA administration but not α2β1-mediated collagen binding protects against ischemic brain damage in mice}, series = {International Journal of Molecular Science}, volume = {20}, journal = {International Journal of Molecular Science}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms20082019}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201700}, year = {2019}, abstract = {Platelet collagen interactions at sites of vascular injuries predominantly involve glycoprotein VI (GPVI) and the integrin α2β1. Both proteins are primarily expressed on platelets and megakaryocytes whereas GPVI expression is also shown on endothelial and integrin α2β1 expression on epithelial cells. We recently showed that depletion of GPVI improves stroke outcome without increasing the risk of cerebral hemorrhage. Genetic variants associated with higher platelet surface integrin α2 (ITGA2) receptor levels have frequently been found to correlate with an increased risk of ischemic stroke in patients. However until now, no preclinical stroke study has addressed whether platelet integrin α2β1 contributes to the pathophysiology of ischemia/reperfusion (I/R) injury. Focal cerebral ischemia was induced in C57BL/6 and Itga2\(^{-/-}\) mice by a 60 min transient middle cerebral artery occlusion (tMCAO). Additionally, wild-type animals were pretreated with anti-GPVI antibody (JAQ1) or Fab fragments of a function blocking antibody against integrin α2β1 (LEN/B). In anti-GPVI treated animals, intravenous (IV) recombinant tissue plasminogen activator (rt-PA) treatment was applied immediately prior to reperfusion. Stroke outcome, including infarct size and neurological scoring was determined on day 1 after tMCAO. We demonstrate that targeting the integrin α2β1 (pharmacologic; genetic) did neither reduce stroke size nor improve functional outcome on day 1 after tMCAO. In contrast, depletion of platelet GPVI prior to stroke was safe and effective, even when combined with rt-PA treatment. Our results underscore that GPVI, but not ITGA2, is a promising and safe target in the setting of ischemic stroke.}, language = {en} } @article{SchuhmannGuthmannStolletal.2017, author = {Schuhmann, Michael K. and Guthmann, Josua and Stoll, Guido and Nieswandt, Bernhard and Kraft, Peter and Kleinschnitz, Christoph}, title = {Blocking of platelet glycoprotein receptor Ib reduces "thrombo-inflammation" in mice with acute ischemic stroke}, series = {Journal of Neuroinflammation}, volume = {14}, journal = {Journal of Neuroinflammation}, number = {18}, doi = {10.1186/s12974-017-0792-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157582}, year = {2017}, abstract = {Background: Ischemic stroke causes a strong inflammatory response that includes T cells, monocytes/macrophages, and neutrophils. Interaction of these immune cells with platelets and endothelial cells facilitates microvascular dysfunction and leads to secondary infarct growth. We recently showed that blocking of platelet glycoprotein (GP) receptor Ib improves stroke outcome without increasing the risk of intracerebral hemorrhage. Until now, it has been unclear whether GPIb only mediates thrombus formation or also contributes to the pathophysiology of local inflammation. Methods: Focal cerebral ischemia was induced in C57BL/6 mice by a 60-min transient middle cerebral artery occlusion (tMCAO). Animals were treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab). Rat immunoglobulin G (IgG) Fab was used as control treatment. Stroke outcome, including infarct size and functional deficits as well as the local inflammatory response, was assessed on day 1 after tMCAO. Results: Blocking of GPIb reduced stroke size and improved functional outcome on day 1 after tMCAO without increasing the risk of intracerebral hemorrhage. As expected, disruption of GPIb-mediated pathways in platelets significantly reduced thrombus burden in the cerebral microvasculature. In addition, inhibition of GPIb limited the local inflammatory response in the ischemic brain as indicated by lower numbers of infiltrating T cells and macrophages and lower expression levels of inflammatory cytokines compared with rat IgG Fab-treated controls. Conclusion: In acute ischemic stroke, thrombus formation and inflammation are closely intertwined ("thrombo-inflammation"). Blocking of platelet GPIb can ameliorate thrombo-inflammation.}, language = {en} } @article{SchuhmannGunrebenKleinschnitzetal.2016, author = {Schuhmann, Michael K. and Gunreben, Ignaz and Kleinschnitz, Christoph and Kraft, Peter}, title = {Immunohistochemical Analysis of Cerebral Thrombi Retrieved by Mechanical Thrombectomy from Patients with Acute Ischemic Stroke}, series = {International Journal of Molecular Sciences}, volume = {17}, journal = {International Journal of Molecular Sciences}, number = {3}, doi = {10.3390/ijms17030298}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166206}, pages = {298}, year = {2016}, abstract = {Mechanical thrombectomy is a novel treatment option for patients with acute ischemic stroke (AIS). Only a few studies have previously suggested strategies to categorize retrieved clots according to their histologic composition. However, these reports did not analyze potential biomarkers that are of importance in stroke-related inflammation. We therefore histopathologically investigated 37 intracerebral thrombi mechanically retrieved from patients with AIS, and focused on the composition of immune cells and platelets. We also conducted correlation analyses of distinctive morphologic patterns (erythrocytic, serpentine, layered, red, white, mixed appearance) with clinical parameters. Most T cells and monocytes were detected in erythrocytic and red clots, in which the distribution of these cells was random. In contrast, von Willebrand factor (vWF)-positive areas co-localized with regions of fibrin and collagen. While clots with huge amounts of vWF seem to be associated with a high National Institute of Health Stroke Scale score at admission, histologic findings could not predict the clinical outcome at discharge. In summary, we provide the first histologic description of mechanically retrieved intracerebral thrombi regarding biomarkers relevant for inflammation in ischemic stroke.}, language = {en} } @article{SchuhmannBieberFrankeetal.2021, author = {Schuhmann, Michael K. and Bieber, Michael and Franke, Maximilian and Kollikowski, Alexander M. and Stegner, David and Heinze, Katrin G. and Nieswandt, Bernhard and Pham, Mirko and Stoll, Guido}, title = {Platelets and lymphocytes drive progressive penumbral tissue loss during middle cerebral artery occlusion in mice}, series = {Journal of Neuroinflammation}, volume = {18}, journal = {Journal of Neuroinflammation}, number = {1}, doi = {10.1186/s12974-021-02095-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259172}, pages = {46}, year = {2021}, abstract = {Background In acute ischemic stroke, cessation of blood flow causes immediate tissue necrosis within the center of the ischemic brain region accompanied by functional failure in the surrounding brain tissue designated the penumbra. The penumbra can be salvaged by timely thrombolysis/thrombectomy, the only available acute stroke treatment to date, but is progressively destroyed by the expansion of infarction. The underlying mechanisms of progressive infarction are not fully understood. Methods To address mechanisms, mice underwent filament occlusion of the middle cerebral artery (MCAO) for up to 4 h. Infarct development was compared between mice treated with antigen-binding fragments (Fab) against the platelet surface molecules GPIb (p0p/B Fab) or rat immunoglobulin G (IgG) Fab as control treatment. Moreover, Rag1\(^{-/-}\) mice lacking T-cells underwent the same procedures. Infarct volumes as well as the local inflammatory response were determined during vessel occlusion. Results We show that blocking of the platelet adhesion receptor, glycoprotein (GP) Ibα in mice, delays cerebral infarct progression already during occlusion and thus before recanalization/reperfusion. This therapeutic effect was accompanied by decreased T-cell infiltration, particularly at the infarct border zone, which during occlusion is supplied by collateral blood flow. Accordingly, mice lacking T-cells were likewise protected from infarct progression under occlusion. Conclusions Progressive brain infarction can be delayed by blocking detrimental lymphocyte/platelet responses already during occlusion paving the way for ultra-early treatment strategies in hyper-acute stroke before recanalization.}, language = {en} } @article{SchnabelCamenKnebeletal.2021, author = {Schnabel, Renate B. and Camen, Stephan and Knebel, Fabian and Hagendorff, Andreas and Bavendiek, Udo and B{\"o}hm, Michael and Doehner, Wolfram and Endres, Matthias and Gr{\"o}schel, Klaus and Goette, Andreas and Huttner, Hagen B. and Jensen, Christoph and Kirchhof, Paulus and Korosoglou, Grigorius and Laufs, Ulrich and Liman, Jan and Morbach, Caroline and Navabi, Darius G{\"u}nther and Neumann-Haefelin, Tobias and Pfeilschifter, Waltraut and Poli, Sven and Rizos, Timolaos and Rolf, Andreas and R{\"o}ther, Joachim and Sch{\"a}bitz, Wolf R{\"u}diger and Steiner, Thorsten and Thomalla, G{\"o}tz and Wachter, Rolf and Haeusler, Karl Georg}, title = {Expert opinion paper on cardiac imaging after ischemic stroke}, series = {Clinical Research in Cardiology}, volume = {110}, journal = {Clinical Research in Cardiology}, number = {7}, issn = {1861-0692}, doi = {10.1007/s00392-021-01834-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266662}, pages = {938-958}, year = {2021}, abstract = {This expert opinion paper on cardiac imaging after acute ischemic stroke or transient ischemic attack (TIA) includes a statement of the "Heart and Brain" consortium of the German Cardiac Society and the German Stroke Society. The Stroke Unit-Commission of the German Stroke Society and the German Atrial Fibrillation NETwork (AFNET) endorsed this paper. Cardiac imaging is a key component of etiological work-up after stroke. Enhanced echocardiographic tools, constantly improving cardiac computer tomography (CT) as well as cardiac magnetic resonance imaging (MRI) offer comprehensive non- or less-invasive cardiac evaluation at the expense of increased costs and/or radiation exposure. Certain imaging findings usually lead to a change in medical secondary stroke prevention or may influence medical treatment. However, there is no proof from a randomized controlled trial (RCT) that the choice of the imaging method influences the prognosis of stroke patients. Summarizing present knowledge, the German Heart and Brain consortium proposes an interdisciplinary, staged standard diagnostic scheme for the detection of risk factors of cardio-embolic stroke. This expert opinion paper aims to give practical advice to physicians who are involved in stroke care. In line with the nature of an expert opinion paper, labeling of classes of recommendations is not provided, since many statements are based on expert opinion, reported case series, and clinical experience.}, language = {en} }