@article{KrebsHaehnelKrummenacheretal.2021, author = {Krebs, Johannes and Haehnel, Martin and Krummenacher, Ivo and Friedrich, Alexandra and Braunschweig, Holger and Finze, Maik and Ji, Lei and Marder, Todd B.}, title = {Synthesis and Structure of an o-Carboranyl-Substituted Three-Coordinate Borane Radical Anion}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {31}, doi = {10.1002/chem.202100938}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256841}, pages = {8159-8167}, year = {2021}, abstract = {Bis(1-(4-tolyl)-carboran-2-yl)-(4-tolyl)-borane [(1-(4-MeC\(_{6}\)H\(_{4}\))-closo-1,2-C\(_{2}\)B\(_{10}\)H\(_{10}\)-2-)\(_{2}\)(4-MeC\(_{6}\)H\(_{4}\))B] (1), a new bis(o-carboranyl)-(R)-borane was synthesised by lithiation of the o-carboranyl precursor and subsequent salt metathesis reaction with (4-tolyl)BBr\(_{2}\). Cyclic voltammetry experiments on 1 show multiple distinct reduction events with a one-electron first reduction. In a selective reduction experiment the corresponding paramagnetic radical anion 1\(^{.-}\) was isolated and characterized. Single-crystal structure analyses allow an in-depth comparison of 1, 1\(^{.-}\), their calculated geometries, and the S\(_{1}\) excited state of 1. Photophysical studies of 1 show a charge transfer (CT) emission with low quantum yield in solution but a strong increase in the solid state. TD-DFT calculations were used to identify transition-relevant orbitals.}, language = {en} } @article{CzernetzkiArrowsmithFantuzzietal.2021, author = {Czernetzki, Corinna and Arrowsmith, Merle and Fantuzzi, Felipe and G{\"a}rtner, Annalena and Tr{\"o}ster, Tobias and Krummenacher, Ivo and Schorr, Fabian and Braunschweig, Holger}, title = {A neutral beryllium(I) radical}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {38}, doi = {10.1002/anie.202108405}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256529}, pages = {20776-20780}, year = {2021}, abstract = {The reduction of a cyclic alkyl(amino)carbene (CAAC)-stabilized organoberyllium chloride yields the first neutral beryllium radical, which was characterized by EPR, IR, UV/Vis spectroscopy and X-ray crystallography. DFT calculations show significant spin density at beryllium and confirm donor-acceptor bonding between an alkylberyllium radical fragment and a neutral CAAC ligand.}, language = {en} }