@phdthesis{Guhn2015, author = {Guhn, Anne}, title = {Modulating the Fear Network: Preclinical Studies on Prefrontal Cortex Stimulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133403}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Pavlovian fear conditioning describes a form of associative learning in which a previously neutral stimulus elicits a conditioned fear response after it has been temporally paired with an aversive consequence. Once acquired, the fear response can be extinguished by repeatedly presenting the former neutral stimulus in the absence of the aversive consequence. Although most patients suffering from anxiety disorders cannot recall a specific conditioned association between a formerly neutral stimulus and the feeling of anxiety, the produced behavioral symptoms, such as avoidance or safety behavior to prevent the anticipated aversive consequence are commonly exhibited in all anxiety disorders. Moreover, there is considerable similarity between the neural structures involved in fear and extinction in the rodent and in the human. Translational research thus contributes to the understanding of neural circuitries involved in the development and maintenance of anxiety disorders, and further provides hypotheses for improvements in treatment strategies aiming at inhibiting the fear response. Since the failure to appropriately inhibit or extinguish a fear response is a key feature of pathological anxiety, the present preclinical research focuses on the interplay between the amygdala and the medial prefrontal cortex (mPFC) during fear learning with particular regard to the prefrontal recruitment during fear extinction and its recall. By firstly demonstrating an increased mPFC activity over the time course of extinction learning with functional near-infrared spectroscopy, the main study of this dissertation focused on repetitive transcranial magnetic stimulation (rTMS) as brain stimulation technique suitable to enhance extinction learning. Since hypofrontality is assumed to underlie the maintenance of pathological anxiety, rTMS application revealed an increased mPFC activity, which resulted in a decreased fear response on the behavioral level both during extinction learning as well as during the recall of extinction 24 hours later and in the absence of another stimulation. The following attempt to improve the generalization of extinction with rTMS from an extinguished stimulus to a second stimulus which was reinforced but not extinguished was at least partially evidenced. By revealing an increased prefrontal activity to the non-extinguished stimulus, the active and the placebo rTMS condition, however, did not differ on behavioral parameters. These preclinical findings were discussed in the light of genetic and environmental risk factors with special regard to the combination of a risk variant of the neuropeptide S receptor 1 gene polymorphism (NPSR1 rs324981) and anxiety sensitivity. While the protective homozygous AA genotype group showed no correlation with anxiety sensitivity, the NPSR1 T genotype group exhibited an inverse correlation with anxiety sensitivity in the presence of emotionally negative stimuli. In light of other findings assuming a role of the NPSR1 T allele in panic disorder, the revealed hypofrontality was discussed to define a risk group of patients who might particularly benefit from an augmentation of exposure therapy with rTMS. Taken together, the presented studies support the central role of the prefrontal cortex in fear extinction and suggest the usefulness of rTMS as an augmentation strategy to exposure therapy in order to decrease therapy relapse rates. The combination of rTMS and extinction has been herein evidenced to modulate fear processes in a preclinical approach thereby establishing important implications for the design of future clinical studies.}, subject = {Angstst{\"o}rung}, language = {en} } @phdthesis{Kastner2015, author = {Kastner, Anna Katharina}, title = {Attention mechanisms in contextual anxiety and cued fear and their influence on processing of social cues}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123747}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Anxiety is an affective state characterized by a sustained, long-lasting defensive response, induced by unpredictable, diffuse threat. In comparison, fear is a phasic response to predictable threat. Fear can be experimentally modeled with the help of cue conditioning. Context conditioning, in which the context serves as the best predictor of a threat due to the absence of any conditioned cues, is seen as an operationalization of sustained anxiety. This thesis used a differential context conditioning paradigm to examine sustained attention processes in a threat context compared to a safety context for the first time. In three studies, the attention mechanisms during the processing of contextual anxiety were examined by measuring heart rate responses and steady-state-visually evoked potentials (ssVEPs). An additional focus was set on the processing of social cues (i.e. faces) and the influence of contextual information on these cues. In a last step, the correlates of sustained anxiety were compared to evoked responses by phasic fear, which was realized in a previously established paradigm combining predictable and unpredictable threat. In the first study, a contextual stimulus was associated with an aversive loud noise, while a second context remained unpaired. This conditioning paradigm created an anxiety context (CTX+) and a safety context (CTX-). After acquisition, a social agent vs. an object was presented as a distractor in both contexts. Heart rate and cortical responses, with ssVEPs by using frequency tagging, to the contexts and the distractors were assessed. Results revealed enhanced ssVEP amplitudes for the CTX+ compared to the CTX- during acquisition and during presentation of distractor stimuli. Additionally, the heart rate was accelerated in the acquisition phase, followed by a heart rate deceleration as a psychophysiological marker of contextual anxiety. Study 2 used the same context conditioning paradigm as Study 1. In contrast to the first study, persons with different emotional facial expressions were presented in the anxiety and safety contexts in order to compare the differential processing of these cues within periods of threat and safety. A similar anxiety response was found in the second study, although only participants who Abstract VIII were aware of the contingency between contexts and aversive event showed a sensory amplification of the threat context, indicated by heart rate response and ssVEP activation. All faces irrespective of their emotional expression received increased attentional resources when presented within the anxiety context, which suggests a general hypervigilance in anxiety contexts. In the third study, the differentiation of predictable and unpredictable threat as an operationalization of fear and anxiety was examined on a cortical and physiological level. In the predictable condition, a social cue was paired with an aversive event, while in the unpredictable condition the aversive event remained unpaired with the respective cue. A fear response to the predictable cue was found, indicated by increased oscillatory response and accelerated heart rate. Both predictable and unpredictable threat yielded increased ssVEP amplitudes evoked by the context stimuli, while the response in the unpredictable context showed longer-lasting ssVEP activation to the threat context. To sum up, all three studies endorsed anxiety as a long-lasting defensive response. Due to the unpredictability of the aversive events, the individuals reacted with hypervigilance in the anxiety context, reflected in a facilitated processing of sensory information and an orienting response. This hypervigilance had an impact on the processing of novel cues, which appeared in the anxiety context. Considering the compared stimuli categories, the stimuli perceived in a state of anxiety received increased attentional resources, irrespective of the emotional arousal conveyed by the facial expression. Both predictable and unpredictable threat elicited sensory amplification of the contexts, while the response in the unpredictable context showed longer-lasting sensory facilitation of the threat context.}, subject = {Angst}, language = {en} }