@phdthesis{Rotzinger2020, author = {Rotzinger, Laura}, title = {Roux-en-Y Magenbypass vermittelte {\"A}nderung der entereoinsulin{\"a}ren Achse : Quantifizierung der Effektgr{\"o}ße auf den Glukosestoffwechsel}, doi = {10.25972/OPUS-20827}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208271}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Nahrungsrestriktion und Gewichtsverlust stellen Schl{\"u}sselfaktoren in der Verbesserung der Insulinresistenz bei Patienten mit Adipositas-assoziiertem Diabetes mellitus Typ 2 dar. Es scheint, dass bariatrische Verfahren, insbesondere der Roux-en-Y Magenbypass Gewichtsabnahme-unabh{\"a}ngige Effekte auf die Verbesserung der Glukosetoleranz durch {\"A}nderung der enteroinsulin{\"a}ren Achse aufweisen. Die biologische Relevanz dieser Effekte ist bisher jedoch unzureichend untersucht. Daher wurden die Magenbypass-spezifischen Effekte von den rein Nahrungsrestriktiven in einem Model mit m{\"a}nnlichen ZUCKER Ratten (fa/fa) abgegrenzt. Die Tiere wurden einem Magenbypass, einer Scheinoperation oder einer Scheinoperation mit anschließender Nahrungsrestriktion zugef{\"u}hrt. ZUCKER (fa/+) Ratten dienten als schlanke Kontrollgruppe. Um den Effekt der anatomischen und hormonellen {\"A}nderung nach Magenbypass auf den Glukosestoffwechsel, die ß-Zellfunktion und die Pankreasmorphologie zu quantifizieren wurde ein oraler Glukosetoleranztest mit Bestimmung der Glukose-, Insulin- und GLP-1- Plasmaspiegel durchgef{\"u}hrt. Zudem erfolgte eine immunhistologische Untersuchung der Langerhansinseln und die Bestimmung der GLP-1 und PDX-1 Expression. Die kombinierten biologischen, molekularen und histologischen Ergebnisse der Pankreasfunktion lassen vermuten, dass die Gewichtsabnahme pr{\"a}dominant in der Verbesserung der Glukosetoleranz nach Roux-en-Y Magenbypass und nicht die erh{\"o}hte GLP-1 Aussch{\"u}ttung ist.}, subject = {Magenbypass}, language = {de} } @phdthesis{Bank2014, author = {Bank, Stephanie}, title = {LC-ESI und MALDI-Massenspektrometrische Analyse nativer und derivatisierter Zucker und Glykane}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106085}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Glykane sind weitverbreitete Biomolek{\"u}le, die meist in Form von Glykokonjugaten, wie beispielsweise als Glykoproteine oder Glykolipide, vorliegen. Durch die Interaktion von Glykanen mit Glykan-bindenden Proteinen wird eine Vielzahl an biochemischen Prozessen ausgel{\"o}st, sowohl physiologischer, als auch pathologischer Art. Die Aufkl{\"a}rung der beteiligten Glykanstrukturen ist daher nicht nur wichtig f{\"u}r das Verst{\"a}ndnis dieser Prozesse, sondern kann auch Hinweise auf verschiedene Erkrankungen geben. Die Identifizierung von Glykanstrukturen kann {\"u}ber verschiedene Wege erfolgen. In der instrumentellen Analytik spielt dabei vor allem die ESI- und MALDI Massenspektrometrie eine wichtige Rolle, da diese sowohl f{\"u}r Detektion, als auch Fragmentierung großer Biomolek{\"u}le geeignet sind. Um die Analyse von Zuckern mittels chromatographischer und massenspektrometrischer Methoden zu erleichtern, werden h{\"a}ufig Derivatisierungsreagenzien eingesetzt. Diese verringern die Polarit{\"a}t der Zucker und erleichtern die Detektion durch das Einbringen von Chromo- oder Fluorophoren. Zur Derivatisierung am reduzierenden Terminus von Glykanen und Zuckern eignen sich vor allem Aminierungsreagenzien oder Hydrazide. Hydrazide haben gegen{\"u}ber anderen Derivatisierungsreagenzien den Vorteil einer einfachen, salzfreien Umsetzung, aus der ein stabiles Derivat mit geschlossenem terminalen Zuckerring hervorgeht. F{\"u}r die vorliegende Arbeit wurde die Derivatisierung mit den neuen Hydrazid Reagenzien INH und BINH, sowie dem bereits von Dr. P. Kapkov{\´a} bearbeiteten BACH untersucht. Als Vergleich dienten die underivatisierten Kohlenhydrate, wie auch das standardm{\"a}ßig eingesetzte Aminierungsreagenz 2-AB. Dabei sollte das Ver-halten verschiedener Zucker und Glykane in Bezug auf chromatographische Trennung, Signalintensit{\"a}t und Fragmentierung analysiert werden. Zun{\"a}chst wurde die Umsetzung von Mono-, Di- und Trisacchariden mit den neuen Derivatisierungsreagenzien INH und BINH optimiert. Dadurch konnte bei beiden Substanzen die komplette Umsetzung der Zucker in ihre Derivate gew{\"a}hrleistet werden. Auch die Derivatisierung mit Hilfe der Mikrowelle konnte bei INH erfolgreich durchgef{\"u}hrt werden. Auf diese Weise ließ sich die Reaktionszeit, im Vergleich zu den im Thermo-mixer® ben{\"o}tigten 90 Minuten, auf 20 Minuten verk{\"u}rzen. Aufgrund der großen Men-gen an Zucker und Derivatisierungsreagenz, die f{\"u}r die Umsetzung in der Mikrowelle n{\"o}tig sind, war der Versuch jedoch nur f{\"u}r INH geeignet. Im n{\"a}chsten Schritt wurde das Trennverhalten der verschiedenen Mono-, Di- und Tri-saccharid-Derivate auf RP-C18- und HILIC-Phasen untersucht. Bei den Monosaccha-riden konnte durch keines der Derivate eine vollst{\"a}ndige Trennung auf einer der Pha-sen erreicht werden. Das beste Ergebnis wurde durch INH auf der HILIC-S{\"a}ule erzielt, doch auch dort konnten die Epimere Glucose, Mannose und Galactose nicht vollst{\"a}n-dig separiert werden. Die Trennung der Disaccharide Maltose, Cellobiose und Lactose konnte auf der HILIC-Phase mit allen Derivaten außer BACH erfolgreich durchgef{\"u}hrt werden, auf der RP-C18 erwies sich dagegen nur 2-AB als geeignet. Bei den Trisac-chariden 3'SLN und 6'SLN konnten sowohl underivatisierte Zucker, als auch s{\"a}mtliche Derivate mittels HILIC getrennt werden. Auch auf der C18-Phase war eine Trennung der BINH, BACH und 2-AB-Derivate m{\"o}glich. Des Weiteren konnte durch die Derivati-sierungen die Signalintensit{\"a}t gegen{\"u}ber den underivatisierten Zuckern deutlich gesteigert werden. Nach ihrer Trennung lassen sich massegleiche Di- und Trisaccharide anhand des Fragmentierungsmusters unterscheiden. W{\"a}hrend bei den underivatisierten Disaccha-riden Maltose, Cellobiose und Lactose die charakteristischen Fragmente nur schwach sichtbar waren, konnte mit Hilfe der Hydrazide INH, BINH und BACH die Differenzie-rung deutlich erleichtert werden. Die 2-AB-Derivatisierung zeigte dagegen keine Ver-besserung der Fragmentierungseigenschaften. Bei der Unterscheidung der Trisaccharide 3'SLN und 6'SLN waren ebenfalls sowohl underivatisierte, als auch Hydrazid-derivatisierte Zucker im Vorteil gegen{\"u}ber den 2-AB-Derivaten. Die Derivatisierung der N-Glykane von Ribonuclease B und Ovalbumin f{\"u}hrte bei der Analyse mittels MALDI-TOF zu einer deutlichen Steigerung der Sensitivit{\"a}t. Beispiels-weise ließen sich bei den Glykanen des Ovalbumins durch die Derivatisierungen drei zus{\"a}tzliche Strukturen im Vergleich zu den nativen Glykanen detektieren. Auch das Fragmentierungsverhalten der Glykane am MALDI-TOF/TOF konnte mit Hilfe der Derivatisierungen erheblich verbessert werden. Besonders die Umsetzung mit BINH f{\"u}hrte zu einer Vielzahl charakteristischer Ringfragmente, wodurch die Aufkl{\"a}rung der verschiedenen Glykanstrukturen deutlich vereinfacht wurde. Auch im Vergleich zu 2 AB zeigten die Hydrazid-Derivate sowohl bessere Fragmentierungseigenschaften, als auch eine einfachere Handhabung f{\"u}r die Messung mittels MALDI-MS. Eine weitere M{\"o}glichkeit zur Identifikation von Glykanstrukturen liegt in der spezifischen Bindung durch Lektine. Diese Untersuchung gibt des Weiteren auch einen Hinweis auf funktionelle Eigenschaften der Glykane. Daf{\"u}r wird die hohe Affinit{\"a}t von Biotin-haltigen Derivatisierungsreagenzien zu Avidin und Streptavidin genutzt. Nach der auf diese Weise erfolgten Immobilisierung der Glykane k{\"o}nnen diese mittels spezifischer Lektine nachgewiesen werden. Die Eignung des neuen Derivatisierungsreagen-zes BINH f{\"u}r diese Zwecke wurde anhand eines Glykan-Arrays getestet. Dadurch ließ sich best{\"a}tigen, dass BINH-derivatisierte Glykane und Zucker sowohl in der Lage sind an Streptavidin zu binden, als auch durch Lektine nachgewiesen werden k{\"o}nnen. Daher kann davon ausgegangen werden, dass BINH grunds{\"a}tzlich f{\"u}r den Einsatz in bio-chemischen Methoden geeignet ist. Zusammenfassend l{\"a}sst sich sagen, dass die Derivatisierung von Kohlenhydraten mit INH, BINH und BACH zu einer deutlichen Verbesserung der Trenn- und Fragmentierungseigenschaften f{\"u}hrten. Dadurch konnten Identifizierung und Strukturanalyse sowohl von kleinen Zuckern, als auch von Glykanen erleichtert werden. Im Vergleich zu dem Standard-Derivatisierungsreagenz 2-AB zeigten die Hydrazide nicht nur im Bereich der Fragmentierungen, sondern auch durch die einfachere Derivatisierungsreaktion wesentliche Vorteile.}, subject = {MALDI-MS}, language = {de} } @phdthesis{Thum2006, author = {Thum, Andreas Stephan}, title = {Sugar reward learning in Drosophila : neuronal circuits in Drosophila associative olfactory learning}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17930}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Genetic intervention in the fly Drosophila melanogaster has provided strong evidence that the mushroom bodies of the insect brain act as the seat of memory traces for aversive and appetitive olfactory learning (reviewed in Heisenberg, 2003). In flies, electroshock is mainly used as negative reinforcer. Unfortunately this fact complicates a comparative consideration with other inscets as most studies use sugar as positive reinforcer. For example, several lines of evidence from honeybee and moth have suggested another site, the antennal lobe, to house neuronal plasticity underlying appetitive olfactory memory (reviewed in Menzel, 2001; Daly et al., 2004). Because of this I focused my work mainly on appetitive olfactory learning. In the first part of my thesis, I used a novel genetic tool, the TARGET system (McGuire et al., 2003), which allows the temporally controlled expression of a given effector gene in a defined set of cells. Comparing effector genes which either block neurotransmission or ablate cells showed important differences, revealing that selection of the appropriate effector gene is critical for evaluating the function of neural circuits. In the second part, a new engram of olfactory memory in the Drosophila projection neurons is described by restoring Rutabaga adenlylate cyclase (rut-AC) activity specifically in these cells. Expression of wild-type rutabaga in the projection neurons fully rescued the defect in sugar reward memory, but not in aversive electric shock memory. No difference was found in the stability of the appetitive memories rescued either in projection neurons or Kenyon cells. In the third part of the thesis I tried to understand how the reinforcing signals for sugar reward are internally represented. In the bee Hammer (1993) described a single octopaminergic neuron - called VUMmx1 - that mediates the sugar stimulus in associative olfactory reward learning. Analysis of single VUM neurons in the fly (Selcho, 2006) identified a neuron with a similar morphology as the VUMmx1 neuron. As there is a mutant in Drosophila lacking the last enzymatic step in octopamine synthesis (Monastirioti et al., 1996), Tyramine beta Hydroxylase, I was able to show that local Tyramine beta Hydroxylase expression successfully rescued sugar reward learning. This allows to conclude that about 250 cells including the VUM cluster are sufficient for mediating the sugar reinforcement signal in the fly. The description of a VUMmx1 similar neuron and the involvement of the VUM cluster in mediating the octopaminergic sugar stimulus are the first steps in establishing a neuronal map for US processing in Drosophila. Based on this work several experiments are contrivable to reach this ultimate goal in the fly. Taken together, the described similiarities between Drosophila and honeybee regarding the memory organisation in MBs and PNs and the proposed internal representation of the sugar reward suggest an evolutionarily conserved mechanism for appetitive olfactory learning in insects.}, subject = {Taufliege}, language = {en} } @phdthesis{Geiger2004, author = {Geiger, Dietmar}, title = {Biophysikalische Untersuchung von Phloem-lokalisierten Carriern und Kaliumkan{\"a}len und deren Interaktion im Modellsystem der Xenopus Oozyte}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Das Phloem stellt ein Netzwerk zur Assimilat- und N{\"a}hrstofftranslokation sowie zur elektrischen Kommunikation innerhalb der Pflanze dar. In apoplastisch beladenden Pflanzen werden die funktionellen Eigenschaften des Phloems im Wesentlichen vom Zusammenspiel eines Transportmoduls, bestehend aus Carriern, Kaliumkan{\"a}len und Protonen-ATPasen, bestimmt. Ausgangspunkt f{\"u}r die biophysikalische Charakterisierung dieses Phloem-Transportmoduls waren Arbeiten zum Saccharosetransport in der Arabidopsis akt2/3-1 Mutante. Das AKT2/3 Gen kodiert f{\"u}r einen Phloem-spezifischen Kaliumkanal vom Shaker-Typ. Die Tatsache, dass der Saccharosegehalt im Phloem dieser Mutante um 50\% im Vergleich zum Wildtyp reduziert war, ließ eine enge Kopplung von Kalium- und Zuckerfl{\"u}ssen vermuten. Um diesen Ph{\"a}notyp aufkl{\"a}ren zu k{\"o}nnen und ein Modell f{\"u}r die Beladungsprozesse an der Phloemmembran zu entwickeln, wurde das heterologe Expressionssystem der Xenopus Oozyten gew{\"a}hlt. So konnte in Coexpressionsstudien die Interaktion von Phloem-lokalisierten Kaliumkan{\"a}len und Transportern sowie die Kopplung des Kalium- und Zuckertransports mit Hilfe biophysikalischer Methoden untersucht werden.}, subject = {Phloem}, language = {de} } @phdthesis{Blatt2001, author = {Blatt, Jasmina}, title = {Haemolymph sugar homeostasis and the control of the proventriculus in the honeybee (Apis mellifera carnica L.)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-880}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The proventriculus regulates the food passage from crop to midgut. As the haemolymph provides a constantly updated indication of an insect's nutritional state, it is assumed that the factor controlling the proventri-culus activity is to be found in the haemolymph. The purpose of this doctoral thesis was to investigate how output (metabolic rate), input (food quality and food quantity) and internal state variables (haemolymph osmolarity and haemolymph sugar titer) affect each other and which of these factors controls the activity of the proventriculus in the honeybee. Therefore free-flying foragers were trained to collect con-trolled amounts of different sugar solutions. Immediately after feeding, metabolic rates were measured over different periods of time, then crop-emptying rates and haemolymph sugar titers were measured for the same individual bees. Under all investigated conditions, both the sugar transport rates through the proventriculus and the haemolyph sugar titers depended mainly on the metabolism. For bees collecting controlled amounts of 15 per cent, 30 per cent or 50 per cent sucrose solution haemolymph trehalose, glucose and fructose titers were constant for metabolic rates from 0 to 4.5 mlCO2/h. At higher metabolic rates, trehalose concentration decreased while that of glucose and fructose increased with the exception of bees fed 15 per cent sucrose solution. As the supply of sugar from the crop via the proventriculus was sufficient to support even the highest metabolic rates, the observed pattern must result from an upper limit in the capacity of the fat body to synthesise trehalose. The maximal rate of conversion of glucose to trehalose in the fat body was therefore calculated to average 92.4 µg glucose/min. However, for bees fed 15 per cent sucrose solution both the rate of conversion of glucose to trehalose and the rate of sugar transport from the crop to the midgut were limited, causing an overall decrease in total haemolymph sugar titers for metabolic rates higher than 5 mlCO2/h. Haemolymph sucrose titers were generally low but increased with increasing metabolic rates, even though sucrose was not always detected in bees with high metabolic rates. Though foragers were able to adjust their sugar transport rates precisely to their metabolic rates, a fixed surplus of sugars was transported through the proventriculus under specific feed-ing conditions. This fixed amount of sugars increased with increasing concentration and in-creasing quantity of fed sugar solution, but decreased with progressing time after feeding. This fixed amount of sugars was independent of the metabolic rates of the bees and of the molarity and viscosity of the fed sugar solution. As long as the bees did not exhaust their crop content, the haemolymph sugar titers were unaffected by the sugar surplus, by the time after feeding, by the concentration and by the viscosity of fed sugar solution. When bees were fed pure glucose (or fructose) solutions, un-usually little fructose (or glucose) was found in the haemolymph, leading to lower total haemolymph sugar titers, while the trehalose titer remained unaffected. In order to investigate the mechanisms underlying the regulation of the honeybee proven-triculus, foraging bees were injected either with metabolisable (glucose, fructose, trehalose), or non-metabolisable sugars (sorbose). Bees reacted to injections of metabolisable sugars with reduced crop-emptying rates, but injection of non-metabolisable sugars had no influence on crop emptying. Therefore it is concluded that the proventriculus regulation is controlled by the concentration of metabolisable compounds in the haemolymph, and not by the haemo-lymph osmolarity. A period of 10min was enough to observe reduced crop emptying rates after injections. It is suggested that glucose and fructose have an effect on the proventriculus activity only via their transformation to trehalose. However, when the bees were already in-jected 5min after feeding, no response was detectable. In addition it was investigated whether the overregulation is the result of feed-forward regulation for the imminent take-off and flight. In a first experiment, we investigated whether the bees release an extra amount of sugar solution very shortly before leaving for the hive. In a second experiment, it was tested whether the distance covered by the bees might have an influence on the surplus amount released prior to the take-off. In a third experiment, it was investigated if walking bees fail to release this extra amount of sugars, as they do not have to fly. Though we were not able to demonstrate that the overregulation is the result of feed-forward regulation for the imminent take-off and flight, it is conceivable that this phenome-non is a fixed reaction in foragers that can not be modulated. To investigate whether regulated haemolymph sugar titers are also observed in honeybee foragers returning from natural food sources, their crop contents and haemolymph sugar titers were investigated. While the quantity of the collected nectar was without influence on the haemolymph sugar titers, foragers showed increasing haemolymph sugar titers of glucose, fructose and sucrose with increasing sugar concentration of the carried nectar. In contrast no relationship between crop nectar concentrations and haemolymph trehalose titers was observed. We are sure that the regulation of food passage from crop to midgut is controlled by the trehalose titer. However, under some conditions the balance between consumption and income is not numerically exact. This imprecision depends on the factors which have an impact on the foraging energetics of the bees but are independent of those without influence on the foraging energetics. Therefore we would assume that the proventriculus activity is modulated by the motivational state of the bees.}, subject = {Biene}, language = {en} }