@article{TutovChenWerneretal.2023, author = {Tutov, Anna and Chen, Xinyu and Werner, Rudolf A. and M{\"u}hlig, Saskia and Zimmermann, Thomas and Nose, Naoko and Koshino, Kazuhiro and Lapa, Constantin and Decker, Michael and Higuchi, Takahiro}, title = {Rationalizing the binding modes of PET radiotracers targeting the norepinephrine transporter}, series = {Pharmaceutics}, volume = {15}, journal = {Pharmaceutics}, number = {2}, issn = {1999-4923}, doi = {10.3390/pharmaceutics15020690}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303949}, year = {2023}, abstract = {Purpose: A new PET radiotracer \(^{18}\)F-AF78 showing great potential for clinical application has been reported recently. It belongs to a new generation of phenethylguanidine-based norepinephrine transporter (NET)-targeting radiotracers. Although many efforts have been made to develop NET inhibitors as antidepressants, systemic investigations of the structure-activity relationships (SARs) of NET-targeting radiotracers have rarely been performed. Methods: Without changing the phenethylguanidine pharmacophore and 3-fluoropropyl moiety that is crucial for easy labeling, six new analogs of \(^{18}\)F-AF78 with different meta-substituents on the benzene-ring were synthesized and evaluated in a competitive cellular uptake assay and in in vivo animal experiments in rats. Computational modeling of these tracers was established to quantitatively rationalize the interaction between the radiotracers and NET. Results: Using non-radiolabeled reference compounds, a competitive cellular uptake assay showed a decrease in NET-transporting affinity from meta-fluorine to iodine (0.42 and 6.51 µM, respectively), with meta-OH being the least active (22.67 µM). Furthermore, in vivo animal studies with radioisotopes showed that heart-to-blood ratios agreed with the cellular experiments, with AF78(F) exhibiting the highest cardiac uptake. This result correlates positively with the electronegativity rather than the atomic radius of the meta-substituent. Computational modeling studies revealed a crucial influence of halogen substituents on the radiotracer-NET interaction, whereby a T-shaped π-π stacking interaction between the benzene-ring of the tracer and the amino acid residues surrounding the NET binding site made major contributions to the different affinities, in accordance with the pharmacological data. Conclusion: The SARs were characterized by in vitro and in vivo evaluation, and computational modeling quantitatively rationalized the interaction between radiotracers and the NET binding site. These findings pave the way for further evaluation in different species and underline the potential of AF78(F) for clinical application, e.g., cardiac innervation imaging or molecular imaging of neuroendocrine tumors.}, language = {en} } @article{KhatriChungWerneretal.2021, author = {Khatri, Wajahat and Chung, Hyun Woo and Werner, Rudolf A. and Leal, Jeffrey P. and Pienta, Kenneth J. and Lodge, Martin A. and Gorin, Michael A. and Pomper, Martin G. and Rowe, Steven P.}, title = {Effect of point-spread function reconstruction for indeterminate PSMA-RADS-3A lesions on PSMA-targeted PET imaging of men with prostate cancer}, series = {Diagnostics}, volume = {11}, journal = {Diagnostics}, number = {4}, issn = {2075-4418}, doi = {10.3390/diagnostics11040665}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236528}, year = {2021}, abstract = {Purpose: Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) is emerging as an important modality for imaging patients with prostate cancer (PCa). As with any imaging modality, indeterminate findings will arise. The PSMA reporting and data system (PSMA-RADS) version 1.0 codifies indeterminate soft tissue findings with the PSMA-RADS-3A moniker. We investigated the role of point-spread function (PSF) reconstructions on categorization of PSMA-RADS-3A lesions. Methods: This was a post hoc analysis of an institutional review board approved prospective trial. Around 60 min after the administration of 333 MBq (9 mCi) of PSMA-targeted \(^{18}\)F-DCFPyL, patients underwent PET/computed tomography (CT) acquisitions from the mid-thighs to the skull vertex. The PET data were reconstructed with and without PSF. Scans were categorized according to PSMA-RADS version 1.0, and all PSMA-RADS-3A lesions on non-PSF images were re-evaluated to determine if any could be re-categorized as PSMA-RADS-4. The maximum standardized uptake values (SUVs) of the lesions, mean SUVs of blood pool, and the ratios of those values were determined. Results: A total of 171 PSMA-RADS-3A lesions were identified in 30 patients for whom both PSF reconstructions and cross-sectional imaging follow-up were available. A total of 13/171 (7.6\%) were re-categorized as PSMA-RADS-4 lesions with PSF reconstructions. A total of 112/171 (65.5\%) were found on follow-up to be true positive for PCa, with all 13 of the re-categorized lesions being true positive on follow-up. The lesions that were re-categorized trended towards having higher SUV\(_{max}\)-lesion and SUV\(_{max}\)-lesion/SUV\(_{mean}\)-blood-pool metrics, although these relationships were not statistically significant. Conclusions: The use of PSF reconstructions for \(^{18}\)F-DCFPyL PET can allow the appropriate re-categorization of a small number of indeterminate PSMA-RADS-3A soft tissue lesions as more definitive PSMA-RADS-4 lesions. The routine use of PSF reconstructions for PSMA-targeted PET may be of value at those sites that utilize this technology.}, language = {en} } @article{ToyamaWernerRuizBedoyaetal.2021, author = {Toyama, Yoshitaka and Werner, Rudolf A. and Ruiz-Bedoya, Camilo A. and Ordonez, Alvaro A. and Takase, Kei and Lapa, Constantin and Jain, Sanjay K. and Pomper, Martin G. and Rowe, Steven P. and Higuchi, Takahiro}, title = {Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon}, series = {Theranostics}, volume = {11}, journal = {Theranostics}, number = {12}, doi = {10.7150/thno.58682}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260090}, pages = {6105-6119}, year = {2021}, abstract = {In recent years, a paradigm shift from single-photon-emitting radionuclide radiotracers toward positron-emission tomography (PET) radiotracers has occurred in nuclear oncology. Although PET-based molecular imaging of the kidneys is still in its infancy, such a trend has emerged in the field of functional renal radionuclide imaging. Potentially allowing for precise and thorough evaluation of renal radiotracer urodynamics, PET radionuclide imaging has numerous advantages including precise anatomical co-registration with CT images and dynamic three-dimensional imaging capability. In addition, relative to scintigraphic approaches, PET can allow for significantly reduced scan time enabling high-throughput in a busy PET practice and further reduces radiation exposure, which may have a clinical impact in pediatric populations. In recent years, multiple renal PET radiotracers labeled with C-11, Ga-68, and F-18 have been utilized in clinical studies. Beyond providing a precise non-invasive read-out of renal function, such radiotracers may also be used to assess renal inflammation. This manuscript will provide an overview of renal molecular PET imaging and will highlight the transformation of conventional scintigraphy of the kidneys toward novel, high-resolution PET imaging for assessing renal function. In addition, future applications will be introduced, e.g. by transferring the concept of molecular image-guided diagnostics and therapy (theranostics) to the field of nephrology.}, language = {en} } @article{SchadtIsraelSamnick2021, author = {Schadt, Fabian and Israel, Ina and Samnick, Samuel}, title = {Development and Validation of a Semi-Automated, Preclinical, MRI-Template Based PET Image Data Analysis Tool for Rodents}, series = {Frontiers in Neuroinformatics}, volume = {15}, journal = {Frontiers in Neuroinformatics}, issn = {1662-5196}, doi = {10.3389/fninf.2021.639643}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240289}, year = {2021}, abstract = {AimIn PET imaging, the different types of radiotracers and accumulations, as well as the diversity of disease patterns, make the analysis of molecular imaging data acquired in vivo challenging. Here, we evaluate and validate a semi-automated MRI template-based data analysis tool that allows preclinical PET images to be aligned to a self-created PET template. Based on the user-defined volume-of-interest (VOI), image data can then be evaluated using three different semi-quantitative parameters: normalized activity, standardized uptake value, and uptake ratio. Materials and MethodsThe nuclear medicine Data Processing Analysis tool (NU_DPA) was implemented in Matlab. Testing and validation of the tool was performed using two types of radiotracers in different kinds of stroke-related brain diseases in rat models. The radiotracers used are 2-[\(^{18}\)F]fluoro-2-deoxyglucose ([\(^{18}\)F]FDG), a metabol\(^{68}\)Ga]Ga-Fucoidan, a target-selective radioligand specifically binding to p-selectin. After manual image import, the NU_DPA tool automatically creates an averaged PET template out of the acquired PET images, to which all PET images are then aligned onto. The added MRI template-based information, resized to the lower PET resolution, defines the VOI and also allows a precise subdivision of the VOI into individual sub-regions. The aligned PET images can then be evaluated semi-quantitatively for all regions defined in the MRI atlas. In addition, a statistical analysis and evaluation of the semi-quantitative parameters can then be performed in the NU_DPA tool. ResultsUsing ischemic stroke data in Wistar rats as an example, the statistical analysis of the tool should be demonstrated. In this [\(^{18}\)F]FDG-PET experiment, three different experimental states were compared: healthy control state, ischemic stroke without electrical stimulation, ischemic stroke with electrical stimulation. Thereby, statistical data evaluation using the NU_DPA tool showed that the glucose metabolism in a photothrombotic lesion can be influenced by electrical stimulation. ConclusionOur NU_DPA tool allows a very flexible data evaluation of small animal PET data in vivo including statistical data evaluation. Using the radiotracers [\(^{18}\)F]FDG and [\(^{68}\)Ga]Ga-Fucoidan, it was shown that the semi-automatic MRI-template based data analysis of the NU_DPA tool is potentially suitable for both metabolic radiotracers as well as target-selective radiotracers.}, language = {en} } @article{GentzschHoffmannOhshimaetal.2021, author = {Gentzsch, Christian and Hoffmann, Matthias and Ohshima, Yasuhiro and Nose, Naoko and Chen, Xinyu and Higuchi, Takahiro and Decker, Michael}, title = {Synthesis and Initial Characterization of a Selective, Pseudo-irreversible Inhibitor of Human Butyrylcholinesterase as PET Tracer}, series = {ChemMedChem}, volume = {16}, journal = {ChemMedChem}, number = {9}, doi = {10.1002/cmdc.202000942}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239904}, pages = {1427 -- 1437}, year = {2021}, abstract = {The enzyme butyrylcholinesterase (BChE) represents a promising target for imaging probes to potentially enable early diagnosis of neurodegenerative diseases like Alzheimer's disease (AD) and to monitor disease progression in some forms of cancer. In this study, we present the design, facile synthesis, in vitro and preliminary ex vivo and in vivo evaluation of a morpholine-based, selective inhibitor of human BChE as a positron emission tomography (PET) tracer with a pseudo-irreversible binding mode. We demonstrate a novel protecting group strategy for 18F radiolabeling of carbamate precursors and show that the inhibitory potency as well as kinetic properties of our unlabeled reference compound were retained in comparison to the parent compound. In particular, the prolonged duration of enzyme inhibition of such a morpholinocarbamate motivated us to design a PET tracer, possibly enabling a precise mapping of BChE distribution.}, language = {en} } @article{PhilippAbbrederisHerrmannKnopetal.2015, author = {Philipp-Abbrederis, Kathrin and Herrmann, Ken and Knop, Stefan and Schottelius, Margret and Eiber, Matthias and L{\"u}ckerath, Katharina and Pietschmann, Elke and Habringer, Stefan and Gerngroß, Carlos and Franke, Katharina and Rudelius, Martina and Schirbel, Andreas and Lapa, Constantin and Schwamborn, Kristina and Steidle, Sabine and Hartmann, Elena and Rosenwald, Andreas and Kropf, Saskia and Beer, Ambros J and Peschel, Christian and Einsele, Hermann and Buck, Andreas K and Schwaiger, Markus and G{\"o}tze, Katharina and Wester, Hans-J{\"u}rgen and Keller, Ulrich}, title = {In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma}, series = {EMBO Molecular Medicine}, volume = {7}, journal = {EMBO Molecular Medicine}, number = {4}, doi = {10.15252/emmm.201404698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148738}, pages = {477-487}, year = {2015}, abstract = {CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [\(^{68}\)Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [\(^{68}\)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [\(^{68}\)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [\(^{18}\)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34\(^{+}\) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [\(^{68}\)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases.}, language = {en} } @article{LueckerathLapaAlbertetal.2015, author = {L{\"u}ckerath, Katharina and Lapa, Constantin and Albert, Christa and Herrmann, Ken and J{\"o}rg, Gerhard and Samnick, Samuel and Einsele, Herrmann and Knop, Stefan and Buck, Andreas K.}, title = {\(^{11}\)C-Methionine-PET: a novel and sensitive tool for monitoring of early response to treatment in multiple myeloma}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {10}, doi = {10.18632/oncotarget.3053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148688}, pages = {8418-8429}, year = {2015}, abstract = {Multiple myeloma (MM) remains an essentially incurable hematologic malignancy. However, new treatment modalities and novel drugs have been introduced and thus additional tools for therapy monitoring are increasingly needed. Therefore, we evaluated the radiotracers \(^{11}\)C-Methionine (paraprotein-biosynthesis) and \(^{18}\)F-FDG (glucose-utilization) for monitoring response to anti-myeloma-therapy and outcome prediction. Influence of proteasome-inhibition on radiotracer-uptake of different MM cell-lines and patient-derived CD138\(^{+}\) plasma cells was analyzed and related to tumor-biology. Mice xenotransplanted with MM. 1S tumors underwent MET- and FDG-\(\mu\)PET. Tumor-to-background ratios before and after 24 h, 8 and 15 days treatment with bortezomib were correlated to survival. Treatment reduced both MET and FDG uptake; changes in tracer-retention correlated with a switch from high to low CD138-expression. In xenotransplanted mice, MET-uptake significantly decreased by 30-79\% as early as 24 h after bortezomib injection. No significant differences were detected thus early with FDG. This finding was confirmed in patient-derived MM cells. Importantly, early reduction of MET-but not FDG-uptake correlated with improved survival and reduced tumor burden in mice. Our results suggest that MET is superior to FDG in very early assessment of response to anti-myeloma-therapy. Early changes in MET-uptake have predictive potential regarding response and survival. MET-PET holds promise to individualize therapies in MM in future.}, language = {en} } @article{WernerChenRoweetal.2018, author = {Werner, Rudolf A. and Chen, Xinyu and Rowe, Steven P. and Lapa, Constantin and Javadi, Mehrbod S. and Higuchi, Takahiro}, title = {Moving into the Next Era of PET Myocardial Perfusion Imaging - Introduction of Novel \(^{18}\)F-labeled Tracers}, series = {The International Journal of Cardiovascular Imaging}, journal = {The International Journal of Cardiovascular Imaging}, issn = {1569-5794}, doi = {10.1007/s10554-018-1469-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169134}, year = {2018}, abstract = {The heart failure (HF) epidemic continues to rise with coronary artery disease (CAD) as one of its main causes. Novel concepts for risk stratification to guide the referring cardiologist towards revascularization procedures are of significant value. Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) agents has demonstrated high accuracy for the detection of clinically relevant stenoses. With positron emission tomography (PET) becoming more widely available, mainly due to its diagnostic performance in oncology, perfusion imaging with that modality is more practical than in the past and overcomes existing limitations of SPECT MPI. Advantages of PET include more reliable quantification of absolute myocardial blood flow, the routine use of computed tomography for attenuation correction, a higher spatiotemporal resolution and a higher count sensitivity. Current PET radiotracers such as rubidium-82 (half-life, 76 sec), oxygen-15 water (2 min) or nitrogen-13 ammonia (10 min) are labeled with radionuclides with very short half-lives, necessitating that stress imaging is performed under pharmacological vasodilator stress instead of exercise testing. However, with the introduction of novel 18F-labeled MPI PET radiotracers (half-life, 110 min), the intrinsic advantages of PET can be combined with exercise testing. Additional advantages of those radiotracers include, but are not limited to: potentially improved cost-effectiveness due to the use of pre-existing delivery systems and superior imaging qualities, mainly due to the shortest positron range among available PET MPI probes. In the present review, widely used PET MPI radiotracers will be reviewed and potential novel 18F-labeled perfusion radiotracers will be discussed.}, subject = {Positronenemissionstomografie}, language = {en} } @article{WernerBundschuhHiguchietal.2018, author = {Werner, Rudolf A. and Bundschuh, Ralph A. and Higuchi, Takahiro and Javadi, Mehrbod S. and Rowe, Steven P. and Zs{\´o}t{\´e}r, Norbert and Kroiss, Matthias and Fassnacht, Martin and Buck, Andreas K. and Kreissl, Michael C. and Lapa, Constantin}, title = {Volumetric and Texture Analysis of Pretherapeutic \(^{18}\)F-FDG PET can Predict Overall Survival in Medullary Thyroid Cancer Patients Treated with Vandetanib}, series = {Endocrine}, journal = {Endocrine}, issn = {1355-008X}, doi = {10.1007/s12020-018-1749-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167910}, year = {2018}, abstract = {Purpose: The metabolically most active lesion in 2-deoxy-2-(\(^{18}\)F)fluoro-D-glucose (\(^{18}\)F-FDG) PET/CT can predict progression-free survival (PFS) in patients with medullary thyroid carcinoma (MTC) starting treatment with the tyrosine kinase inhibitor (TKI) vandetanib. However, this metric failed in overall survival (OS) prediction. In the present proof of concept study, we aimed to explore the prognostic value of intratumoral textural features (TF) as well as volumetric parameters (total lesion glycolysis, TLG) derived by pre-therapeutic \(^{18}\)F-FDG PET. Methods: Eighteen patients with progressive MTC underwent baseline \(^{18}\)F-FDG PET/CT prior to and 3 months after vandetanib initiation. By manual segmentation of the tumor burden at baseline and follow-up PET, intratumoral TF and TLG were computed. The ability of TLG, imaging-based TF, and clinical parameters (including age, tumor marker doubling times, prior therapies and RET (rearranged during transfection) mutational status) for prediction of both PFS and OS were evaluated. Results: The TF Complexity and the volumetric parameter TLG obtained at baseline prior to TKI initiation successfully differentiated between low- and high-risk patients. Complexity allocated 10/18 patients to the high-risk group with an OS of 3.3y (vs. low-risk group, OS=5.3y, 8/18, AUC=0.78, P=0.03). Baseline TLG designated 11/18 patients to the high-risk group (OS=3.5y vs. low-risk group, OS=5y, 7/18, AUC=0.83, P=0.005). The Hazard Ratio for cancer-related death was 6.1 for Complexity (TLG, 9.5). Among investigated clinical parameters, the age at initiation of TKI treatment reached significance for PFS prediction (P=0.02, OS, n.s.). Conclusions: The TF Complexity and the volumetric parameter TLG are both independent parameters for OS prediction.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{ChenHiranoWerneretal.2018, author = {Chen, Xinyu and Hirano, Mitsuru and Werner, Rudolf A. and Decker, Michael and Higuchi, Takahiro}, title = {Novel \(^{18}\)F-labeled PET Imaging Agent FV45 targeting the Renin-Angiotensin System}, series = {ACS Omega}, volume = {3}, journal = {ACS Omega}, number = {9}, issn = {2470-1343}, doi = {10.1021/acsomega.8b01885}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167144}, pages = {10460-10470}, year = {2018}, abstract = {Renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure and hormonal balance. Using positron emission tomography (PET) technology, it is possible to monitor the physiological and pathological distribution of angiotensin II type 1 receptors (AT\(_1\)), which reflects the functionality of RAS. A new \(^{18}\)F-labeled PET tracer derived from the clinically used AT\(_1\) antagonist valsartan showing the least possible chemical alteration from the valsartan structure has been designed and synthesized with several strategies, which can be applied for the syntheses of further derivatives. Radioligand binding study showed that the cold reference FV45 (K\(_i\) 14.6 nM) has almost equivalent binding affinity as its lead valsartan (K\(_i\) 11.8 nM) and angiotensin II (K\(_i\) 1.7 nM). Successful radiolabeling of FV45 in a one-pot radiofluorination followed by the deprotection procedure with 21.8 ± 8.5\% radiochemical yield and >99\% radiochemical purity (n = 5) enabled a distribution study in rats and opened a path to straightforward large-scale production. A fast and clear kidney uptake could be observed, and this renal uptake could be selectively blocked by pretreatment with AT\(_1\)-selective antagonist valsartan. Overall, as the first \(^{18}\)F-labeled PET tracer based on a derivation from clinically used drug valsartan with almost identical chemical structure, [\(^{18}\)F]FV45 will be a new tool for assessing the RAS function by visualizing AT\(_i\) receptor distributions and providing further information regarding cardiovascular system malfunction as well as possible applications in inflammation research and cancer diagnosis.}, subject = {Positronen-Emissions-Tomografie}, language = {en} }