@phdthesis{Settels2012, author = {Settels, Volker}, title = {Quantum chemical description of ultrafast exciton self-trapping in perylene based materials}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69861}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen dieser Dissertation wurden sehr lange Exzitonen-Diffusionsl{\"a}ngen (LD) unter idealen Bedingungen f{\"u}r Perylen-basierte Materialien simuliert. Dies ist ein Indiz daf{\"u}r, dass die sehr kurzen LD in realen Materialien aus einer extrinsischen sowie einer intrinsischen Immobilisierung resultieren. Letztere basiert auf einer Relaxation in sogenannten „Self-Trapping"-Zust{\"a}nde. Ein tieferes Verst{\"a}ndnis der dem Self-Trapping zugrunde liegenden atomistischen Prozesse ist notwendig, um zuk{\"u}nftig Materialien mit langen LD entwickeln zu k{\"o}nnen, bei denen eine intrinsische Exzitonen-Immobilisierung verhindert wird. F{\"u}r die Entwicklung eines solchen mechanistischen Verst{\"a}ndnisses ist das Vorliegen einer eindeutigen Korrelation zwischen der molekularen Anordnung und der LD unabdingbar. Diese weisen Einkristalle von Diindenoperylen (DIP) und α-Perylen-tetracarboxyl-anhydrid (α-PTCDA) auf. Bei ersteren wurde eine außergew{\"o}hnlich lange LD von 90 nm und bei letzteren nur 22 nm gemessen. Teil dieser Arbeit war es, Gr{\"u}nde f{\"u}r diesen Unterschied in der LD zu finden. Nur Self-Trapping kommt als Ursache in Frage. Aus diesem Grund eignen sich diese Materialien, um ein atomistisches Verst{\"a}ndnis des Self-Trappings exemplarisch an ihnen zu erarbeiten. Mutmaßlich k{\"o}nnten Differenzen in der elektronischen Struktur in DIP und α-PTCDA f{\"u}r das unterschiedliche Self-Trapping verantwortlich sein. Allerdings konnte gezeigt werden, dass es f{\"u}r viele Perylen-basierte Materialien keine signifikanten Unterschiede in der elektronischen Struktur gibt, wodurch diese f{\"u}r die Aufkl{\"a}rung von Immobilisierungsmechanismen zu vernachl{\"a}ssigen sind. Eine weitere m{\"o}gliche Begr{\"u}ndung w{\"a}re in Polarisationseffekten im Kristall zu suchen, welche die elektronische Struktur in Perylen-basierten Materialien unterschiedlich beeinflussen. Vor allem ihr Einfluss auf Ladungstrennungs-Zust{\"a}nde (CT), die oberhalb des optisch hellen Frenkel-Zustandes liegen, war fraglich, weil sie energetisch abgesenkt werden k{\"o}nnten. Ein signifikanter Einfluss von Polarisationseffekten konnte aber f{\"u}r alle Zust{\"a}nde mittels eines polarisierbaren Kontinuum-Modells ausgeschlossen werden. Die geringe LD im α-PTCDA ist folglich ein Indiz f{\"u}r ein Self-Trapping, das durch die Kristallstruktur aus π-Stapeln evoziert wird, welche in DIP fischgr{\"a}tenartig ist. Da Polarisationseffekte auszuschließen sind, {\"u}bt der Kristall lediglich durch sterische Restriktionen einen Einfluss auf das Dimer aus. Daher muss die Methode f{\"u}r die Beschreibung von Self-Trapping nur diese Effekte ber{\"u}cksichtigen, so dass sich f{\"u}r den Einsatz des mechanical embedding QM/MM-Ansatzes entschieden wurde. Nun konnten Potentialfl{\"a}chen berechnet werden, auf denen anschließend eine Wellenpaketdynamik durchgef{\"u}hrt wurde. Diese Methode erlaubt es erstmals, Mechanismen der Exzitonen-Immobilisierung in organischen Materialien auf einer atomistischen Ebene zu beschreiben. Als Erkl{\"a}rung f{\"u}r Self-Trapping in α-PTCDA dienten Potentialfl{\"a}chen, die eine intermolekulare Verschiebung des Dimers im Kristall abbilden. So wurde eine Exzitonen-Immobilisierung innerhalb von 500 fs gefunden, die aus einem irreversiblem Energieverlust und einer lokalen Verzerrung der Kristallstruktur resultiert und auf diese Weise den weiteren Transport des Exzitons verhindert. Im Fall von DIP kann diese Immobilisierung aufgrund hoher Energiebarrieren nicht stattfinden. Diese Barrieren resultieren aus der fischgr{\"a}tenartigen Kristallstruktur des DIP. Diese Diskrepanzen in der Dynamik erkl{\"a}ren die unterschiedlichen LD-Werte f{\"u}r DIP und α-PTCDA. In einem weiteren Fall wurde eine Exzitonen-Immobilisierung in helikalen π Aggregaten von Perylen-tetracarboxyl-bisimid (PBI) Molek{\"u}len festgestellt. Hier wird Self-Trapping durch einen Relaxationsmechanismus verursacht, in dem das Exziton durch geringe asymmetrische Schwingungen des Aggregats innerhalb von 200 fs von dem hellen Frenkel- in den dunklen Frenkel-Zustand transferiert wird, wobei dieser {\"U}bergang von einem CT-Zustand vermittelt wird. Der gesamte Vorgang ist nur bei helikalen Aggregaten m{\"o}glich, weil nur hier CT-Zust{\"a}nde sehr dicht bei dem hellen Frenkel-Zustand vorhanden sind. Im finalen Frenkel-Zustand tritt eine Torsionsbewegung um die π-Stapelachse ein, so dass ein Energieverlust und eine lokale {\"A}nderung der Aggregatstruktur erfolgt - also ein Self-Trapping des Exzitons. Dieser modellierte Mechanismus steht im Einklang zu allen vorliegenden experimentellen Daten. Diese Erkenntnisse lassen die Schlussfolgerung zu, dass in k{\"u}nftigen Materialen f{\"u}r organische Solarzellen eine irreversible und ultraschnelle Deformation des Aggregats nach der Photoanregung vermieden werden muss - will man lange LD erreichen. Nur so kann Self-Trapping von Exzitonen verhindert werden.}, subject = {Exziton}, language = {en} } @phdthesis{Stich2012, author = {Stich, Dominik}, title = {Zur Exziton- und Ladungstr{\"a}gerdynamik in einwandigen Kohlenstoffnanor{\"o}hren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70193}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In dieser Dissertation wurde die Exziton- und Ladungstr{\"a}gerdynamik in halbleitenden und metallischen einwandigen Kohlenstoffnanor{\"o}hren (SWNTs) mittels zeitkorreliertem Einzelphotonenz{\"a}hlen (TCSPC) und transienter Absorptionsspektroskopie untersucht. Die Experimente wurden an Tensid- oder DNA-stabilisierten SWNT-Proben in Suspension durchgef{\"u}hrt, in denen durch Dichtegradientenultrazentrifugation (DGU) halbleitende (6,5)-R{\"o}hren oder metallische (9,9)-R{\"o}hren angereichert wurden. F{\"u}r die Herstellung der metallischen SWNT-Proben wurde das DGU-Verfahren optimiert. Metallische SWNT-Proben wiesen eine Verunreinigung von etwa 3\% halbleitenden SWNTs auf. Von den angereicherten metallischen SWNTs war die (9,9)-R{\"o}hre mit einem relativen Anteil von 40\% die vorherrschende Chiralit{\"a}t. F{\"u}r transiente Absorptionsmessungen wurden die metallischen SWNT-Proben zudem durch Filtration aufkonzentriert. Halbleitende (6,5)-Proben wurden mit einem standardm{\"a}ßig verwendeten Rezept hergestellt. Mit TCSPC-Messungen an (6,5)-Proben wurde erstmals gezeigt, dass halbleitende SWNTs neben der kurzlebigen Fluoreszenz des S1-Exzitons, die auf der ps-Zeitskala abl{\"a}uft, auch eine langlebig Fluoreszenzkomponente aufweisen. Diese klingt mit t^-1 ab und stammt ebenfalls aus dem S1-Exzitonzustand. Das relative Gewicht der langlebigen Komponente an der Quantenausbeute betr{\"a}gt (7 ± 2)\%. Bei der langlebige Fluoreszenzkomponente handelt es sich um verz{\"o}gerte Fluoreszenz. Diese entsteht durch die Wiederbesetzung des S1-Zustands aus einem tiefergelegenen Triplettzustand. Der vorherrschende Zerfall des Tripletts skaliert mit t^-0,5 und ist auf das nicht-Fick'sche Diffusionsverhalten der Tripletts zur{\"u}ckzuf{\"u}hren, die an St{\"o}rstellen gefangen werden und abreagieren. Wird vor dem {\"U}bergang in den Grundzustand ein weiteres Triplett eingefangen, so kommt es zu einer Triplett-Triplett-Annihilation, die eine Wiederbesetzung des S1-Zustandes bewirkt. F{\"u}r die transienten Absorptionsexperimente wurde ein Messaufbau verwirklicht, der Anregung und Abfrage im VIS und NIR Spektralbereich mit einer Zeitaufl{\"o}sung von bis zu 50 fs erm{\"o}glicht. Die Detektion des Abfragelichts erfolgt spektral aufgel{\"o}st mit einer CCD-Kamera. Der Aufbau erm{\"o}glicht Nachweisempfindlichkeiten von bis zu 0,2 mOD bei einer Integrationszeit von einer Sekunde. Durch unterschiedliche Modulation von Anregungs- und Abfragestrahl ist eine Detektion auf der Differenzfrequenz der Modulationen m{\"o}glich, wodurch Einfl{\"u}sse des Anregungslichts im Abfragespektrum effizient unterdr{\"u}ckt werden. In transienten Absorptionsexperimenten wurde die Exziton- und Ladungstr{\"a}gerdynamik der (9,9)-R{\"o}hre untersucht. Die transienten Absorptionsdaten wurden mit einer globalen Fitroutine angepasst, der ein Vierniveausystem zugrunde lag. Aus dem globalen Fit sind die Photoanregungsspektren (PAS) - die Beitr{\"a}ge der drei angeregten Niveaus zu den transienten Absorptionsspektren - sowie die Zerfallszeiten zug{\"a}nglich. Die PAS sind durch die Exzitonresonanz gekennzeichnet. Breite PB-Banden aufgrund der Besetzungs{\"a}nderung der linearen E00-B{\"a}nder sind im Gegensatz zu transienten Absorptionsmessungen an Graphen oder Graphit nicht erkennbar. Die PAS des schnellen und mittleren Zerfalls sind {\"a}hnlich und weisen eine starkes PB-Signal bei der Energie des M1-Exzitons der (9,9)-R{\"o}hre auf, das von PA-Banden bei h{\"o}heren undtieferen Energien begleitet wird. Der langsame Zerfall ist hingegen durch eine blauverschobene PB-Bande gekennzeichnet, die nur auf der niederenergetischen Seite mit einem PA-Signal einhergeht. Die Zerfallszeiten nehmen mit steigender Anregungsleistung zu und liegen im Bereich von 30 fs bis 120 fs, 500 fs bis 1000 fs und 40 ps. Die schnelle Zerfallskomponente wird mit der Dissoziation der Exzitonen sowie der Thermalisierung der freien Ladungstr{\"a}gen in den linearen Leitungsb{\"a}ndern zu einer heißen Ladungstr{\"a}gerverteilung assoziiert. Die mittlere Zerfallskomponente beschreibt die Abk{\"u}hlung und Rekombination der freien Elektronen und L{\"o}cher. Entscheidender Mechanismus ist hierbei die Streuung an hochenergetischen optischen Phononmoden. Die langsame Zerfallskomponente kann durch langlebige, wahrscheinlich an St{\"o}rstellen gefangene Ladungstr{\"a}ger erkl{\"a}rt werden, deren elektrische Felder durch den Stark-Effekt das ableitungs{\"a}hnliche transiente Absorptionsspektrum erzeugen. Mittels transienter Absorptionsmessungen an (6,5)-R{\"o}hren wurde aus dem anregungsleistungsabh{\"a}ngigen maximalen PB-Signal des S1-Exzitons die Gr{\"o}ße des S1-Exzitons zu (7,2 ± 2,5) nm bestimmt. Aus dem Vergleich der leistungsabh{\"a}ngigen maximalen PB-Signale bei Anregung in das S1- und das S2-Exziton ergibt sich, dass die Konversionseffizienz aus dem S2- in den S1-Zustand 1 ± 0,1 betr{\"a}gt und innerhalb der experimentellen Zeitaufl{\"o}sung von 60 fs vollst{\"a}ndig abl{\"a}uft. Die Exzitongr{\"o}ße in metallischen (9,9)-R{\"o}hren wurde bei Exzitonlebensdauern von 15 fs bis 30 fs zu etwa 7 nm bis 12 nm abgesch{\"a}tzt.}, subject = {Kohlenstoff-Nanor{\"o}hre}, language = {de} }