@phdthesis{Linder2012, author = {Linder, Bastian}, title = {Systemischer Spleißfaktormangel im Zebrafisch Danio rerio - Etablierung und Charakterisierung eines Tiermodells f{\"u}r Retinitis pigmentosa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69965}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Retinitis pigmentosa (RP) ist eine vererbte Form der Erblindung, die durch eine progressive Degeneration von Photorezeptorzellen in der Retina verursacht wird. Neben „klassischen" RP-Krankheitsgenen, die direkt oder indirekt mit dem Sehprozess und der Aufrechterhaltung der Photorezeptoren in Verbindung stehen, k{\"o}nnen auch Mutationen in Genen f{\"u}r konstitutive Spleißfaktoren zur Photorezeptordegeneration f{\"u}hren. RP kann daher als Paradebeispiel einer Erkrankung mit paradoxer Gewebespezifit{\"a}t angesehen werden: Defekte in essentiellen und ubiquit{\"a}r exprimierten Genen f{\"u}hren zu einem Ph{\"a}notyp, der nur wenige Zelltypen betrifft. Um Einblicke in diesen außergew{\"o}hnlichen Pathomechanismus zu erhalten, wurde im Rahmen der vorliegenden Arbeit ein Tiermodell f{\"u}r Spleißfaktor-vermittelte RP im Zebrafisch Danio rerio etabliert. Zun{\"a}chst wurde gezeigt, dass eine RP verursachende Punktmutation des Spleißfaktors Prpf31 auch in dessen Zebrafisch-Homolog zu einem Verlust der physiologischen Aktivit{\"a}t f{\"u}hrt. Als Modell f{\"u}r die Prpf31-Mangelsituation diente dann die durch ein Antisense-Morpholino induzierte partielle Reduktion der Prpf31-Expression in Zebrafischlarven. Konsistent mit einem RP-Ph{\"a}notyp zeigte sich in diesen Larven eine starke Beeintr{\"a}chtigung des Sehverm{\"o}gens. Sie wurde - ebenfalls analog zu RP - durch defekte Photorezeptoren verursacht, die bei ansonsten normal entwickelter Retina eine deutlich ver{\"a}nderte Morphologie aufwiesen. Daraufhin konnten in einer genomweiten Transkriptomanalyse der Augen von Prpf31-defizienten Larven erstmals in vivo photorezeptorspezifische Gene identifiziert werden, deren Expression durch den Mangel an Prpf31 beeintr{\"a}chtigt war. Im zweiten Teil der Arbeit wurde untersucht, ob es neben den bereits bekannten RP-Krankheitsgenen weitere Spleißfaktoren gibt, deren Defekt die Degeneration von Photorezeptoren ausl{\"o}sen kann. Dazu wurde in Zebrafischlarven ein Mangel an Prpf4 erzeugt, einem Spleißfaktor, der bislang nicht mit RP in Verbindung gebracht worden war. Der Ph{\"a}notyp dieser Fische war nicht von dem des Prpf31 RP-Modells zu unterscheiden. Dies lieferte einen Hinweis darauf, dass auch Defekte in Prpf4 in der Lage sein k{\"o}nnten, RP auszul{\"o}sen. Tats{\"a}chlich konnte durch genetisches Screening ein RP-Patient mit einer Punktmutation in Prpf4 identifiziert werden (Kollaboration mit Hanno Bolz, Universit{\"a}t K{\"o}ln). Die biochemische Analyse dieser Mutation zeigte, dass sie zu einem Defekt der Integration von Prpf4 in spleißosomale Untereinheiten und zu dessen Funktionsverlust in vivo f{\"u}hrt. Mit dem in dieser Arbeit etablierten Tiermodell konnte zum ersten Mal in vivo ein von Spleißfaktor-Mutationen verursachter Pathomechanismus von Retinitis pigmentosa nachvollzogen werden. Die vom Prpf31-Mangel betroffenen Photorezeptortranskripte stellen vielversprechende Kandidaten f{\"u}r die Vermittlung der Gewebespezifit{\"a}t dar und unterst{\"u}tzen die Hypothese, dass ihre ineffiziente Prozessierung den RP-Ph{\"a}notyp ausl{\"o}st. Die Entdeckung eines weiteren Spleißfaktors, dessen Defizienz ebenfalls zu defekten Photorezeptoren f{\"u}hrt, zeigt, dass offenbar der Funktionsverlust des Spleißosoms generell in der Lage ist, die Degeneration dieser Zellen zu verursachen. Dies ist nicht zuletzt auch von klinischer Relevanz, da vermutet werden kann, dass sich unter den vielen bisher nicht identifizierten RP-Krankheitsgenen weitere Spleißfaktoren befinden.}, subject = {RNS-Spleißen}, language = {de} } @phdthesis{Dill2012, author = {Dill, Holger}, title = {Functional characterization of the microRNA-26 family in zebrafish neurogenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Formation oft the central nervous system (CNS) from multipotent neuronal stem cells (NSCs) requires a tightly controlled, step-wise activation of the neuronal gene expression program. Expression of neuronal genes at the transition from neural stem cell to mature neuron (i. e. neuronal cell differentiation) is controlled by the Repressor element 1 (RE1) silencing transcription factor (REST) complex. As a master transcriptional regulator, the REST-complex specifically inhibits expression of neuronal genes in non-neuronal tissues and neuronal progenitor cells. Differentiation of NSCs to mature neurons requires the activation of genes controlled by the REST-complex, but how abrogation of REST-complex mediated repression is achieved during neurogenesis is only poorly understood. MicroRNAs (miRNAs) are a class of small regulatory RNAs that posttranscriptionally control target gene expression. Binding of miRNAs to target sequences in the 3'UTR of mRNAs, leads either to degradation or translational inhibition of the mRNA. Distinct neuronal miRNAs (e.g. miR-124) were shown to modulate REST-complex activity by silencing expression of REST-complex components. Interestingly, these miRNAs are also under transcriptional control of the REST-complex and inactivation of the REST-complex precedes their expression. Hence, additional factors are required for derepression of neuronal genes at the onset of neurogenesis. In this study function of the miR-26 family during neurogenesis of the zebrafish (Danio rerio) was analyzed. Computational target prediction revealed a number of REST-complex components as putative miR-26 targets. One of these predicted target genes, the C-terminal domain small phosphatase 2 (Ctdsp2) was validated as an in vivo target for miR-26b. Ctdsps are important cofactors of REST and suppress neuronal gene expression by dephosphorylating the C-terminal domain (CTD) of RNA polymerase II (Pol II). Interestingly, miR-26b is encoded in an intron of the ctdsp2 primary transcript and is cotranscribed together with its host gene. Hence, miR-26b modulates expression of its host gene ctdsp2 in an intrinsic negative autoregulatory loop. This negative autoregulatory loop is inactive in NSCs because miR-26b biogenesis is inhibited at the precursor level. Generation of mature miR-26b is activated during neurogenesis, where it suppresses Ctdsp2 protein expression and is required for neuronal cell differentiation in vivo. Strikingly, miR-26b is expressed prior to miR-124 during neuronal cell differentiation. Thus, it is reasonable to speculate about a function of miR-26b in early events of neurogenesis. In line with this assumption, knockdown of miR-26b in zebrafish embryos results in downregulation of REST-complex controlled neuronal genes and a block in neuronal cell differentiation, most likely due to aberrant regulation of Ctdsp2 expression. This is evident by reduced numbers of secondary motor neurons compared to control siblings. In contrast, motor neuron progenitor cells and glia cells were not affected by depletion of miR-26b.This study identifies the ctdsp2/miR-26b autoregulatory loop as the first experimentally validated interaction between an intronic miRNA and its host gene transcript. Silencing of ctdsp2 by miR-26b in neurons is possible because biogenesis of the ctdsp2 mRNA and mature mir-26b is uncoupled at the posttranscriptional level. Furthermore the obtained data indicate a cell type specific role for miR-26b in vertebrate neurogenesis and CNS development.}, subject = {Zebrab{\"a}rbling}, language = {en} }