@phdthesis{Nocker2012, author = {Nocker, Monika}, title = {Molekulardynamische Untersuchungen zur Charakterisierung von Flexibilit{\"a}t, Bindemechanismen und Bindungsaffinit{\"a}ten von Aldose Reduktase und Nukle{\"a}ren Rezeptoren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72110}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Aldose Reduktase ALR2 katalysiert den ersten Schritt des Sorbitol-Stoffwechselweges. In diesem wird mit Hilfe des Kofaktors NADPH Glukose zu Sorbitol reduziert. Bei erh{\"o}htem Blutzuckerspiegel, wie dies bei Diabetes-Patienten der Fall ist, ist dieser metabolische Weg von Bedeutung. Bis zu einem Drittel der Blutglukose wird zu Sorbitol reduziert. Die Folge der Sorbitolakkumulation in den Zellen und der Verminderung der NADPH-Konzentration sind „osmotischer" sowie „oxidativer" Stress. Diese stehen in Zusammenhang mit den vielfach diskutierten Sp{\"a}tsch{\"a}den des Diabetes, wie diabetischer Katarakt, Neuro- und Nephropathie. Das Enzym ist experimentell sehr gut untersucht und eignet sich daher als Modellsystem zur Untersuchung der intrinsischen Proteinflexibilit{\"a}t und thermodynamischer Daten mit Hilfe von Computermethoden. Unter diesen Voraussetzungen steht der Gewinn eines besseren Verst{\"a}ndnisses von molekularer Erkennung und Proteinbeweglichkeit der ALR2 unter Verwendung von Molekulardynamik-Simulationen MD als prim{\"a}res Ziel im Zentrum dieser Arbeit. Dabei wurden MD-Studien zu zwei kristallographisch erhaltenen Protein-Ligand-Komplexen durchgef{\"u}hrt. Die Liganden unterscheiden sich nur geringf{\"u}gig in der L{\"a}nge einer Seitenkette, ihre Bindung f{\"u}hrt allerdings zu g{\"a}nzlich unterschiedlichen Bindemodi. Einer davon ist bislang einzigartig f{\"u}r die ALR2. Mit Hilfe von MD-Simulationen wurde versucht, eine Erkl{\"a}rung f{\"u}r diese neue Konformation der Bindetasche im Vergleich zu jener eines strukturell sehr {\"a}hnlichen Liganden zu finden. Außerdem waren {\"u}ber diese Studien Aussagen {\"u}ber besonders flexible Bereiche der ALR2-Bindetasche m{\"o}glich, die mit bereits existierenden Erkenntnissen {\"u}ber die Bindetaschenflexibilit{\"a}t verglichen werden konnten. Dar{\"u}ber hinaus gelang es, durch die Methode der gesteuerten Molekulardynamik SMD einen {\"U}bergang zwischen einer r{\"o}ntgenkristallografisch ermittelten kofaktorgebundenen Holo-Konformation und kofaktorfreien Apo-Konformation zu simulieren. Computergest{\"u}tzte Methoden erm{\"o}glichen es also, weitl{\"a}ufige Bewegungen von einer Proteinkonformation in die andere nachzuvollziehen bzw. die experimentell erhaltenen Strukturen zu best{\"a}tigen. Eine mechanistische Deutung des Kofaktorassoziations- und Kofaktordissoziationsprozesses wurde ebenfalls versucht. Daf{\"u}r war es notwendig, strukturelle Ver{\"a}nderungen im Protein zeitlich zu verfolgen und entscheidende Vorg{\"a}nge zu identifizieren. Die Methode der SMD wurde in dieser Arbeit auch auf ein weiteres, pharmakologisch interessantes System {\"u}bertragen. Dabei wurde versucht auch an zwei Vertretern der Klasse der Nukle{\"a}ren Rezeptoren NRs, dem Androgenrezeptor AR und dem Estrogenrezeptor ER, eine solche weitreichende Bewegung nachzuvollziehen. Auch bei diesen Rezeptoren sind zwei in der Position einer alpha-Helix unterschiedliche Formen bekannt. Auch hier wurden mit Hilfe der genannten Methode, relevante Ereignisse hinsichtlich der Helixmobilit{\"a}t identifiziert. Abschließend wurde auf den thermodynamischen Aspekt der Protein-Ligand-Komplexe eingegangen. Durch Berechnungen anhand der Methode der thermodynamischen Integration TI wurden relative Bindungsaffinit{\"a}ten am Modellsystem ALR2 gewonnen. Durch den Vergleich mit experimentell vorhandenen Daten konnte die Methode validiert werden. Das Verfahren der TI sollte in Zukunft eine Voraussage von Affinit{\"a}ten beliebiger, sich geringf{\"u}gig unterscheidender Inhibitoren, die aber denselben Bindemodus aufweisen, erm{\"o}glichen und damit den Prozess des Wirkstoffdesigns erleichtern. Zusammenfassend ergab sich eine gute {\"U}bereinstimmung der experimentell ermittelten Strukturen bzw. Daten mit den durch Computersimulationen erhaltenen.}, subject = {Molekulardynamik}, language = {de} }