@phdthesis{KarabegneeLee2014, author = {Karabeg, n{\´e}e Lee, Margherita Maria}, title = {Differences and Similarities in the Impact of Different Types of Stress on Hippocampal Neuroplasticity in Serotonin Transporter Deficient Mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115831}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Stress has been shown to influence neuroplasticity and is suspected to increase the risk for psychiatric disorders such as major depression and anxiety disorders. Additionally, the short variant of the human serotonin transporter (5-HTT) length polymorphism (5-HTTLPR) is suggested to increase the risk for the development of such disorders. While stress as well as serotonergic signaling are not only discussed to be involved in the development of psychiatric disorders, they are also known to influence hippocampal adult neurogenesis (aN). Therefore, it has long been suspected that aN is involved in the etiology of these illnesses. The exact role of aN in this context however, still remains to be clarified. In the present doctoral thesis, I am introducing two different studies, which had been carried out to assess possible changes in neuroplasticity and behavior as a result of 5-HTT genotype by stress interactions. In both studies, animals of the 5-HTT knock-out (5-HTT-/-) mouse line were used, which have been found to exhibit increased anxiety- and depression-related behavior, an altered stress response and decreased aggressive behavior. The aim of the first study, the so-called Spatial Learning study, had been to evaluate whether mice with altered levels of brain 5-HT as a consequence of lifelong 5-HTT deficiency perform differently in two spatial memory tests, the Morris Water Maze (WM) and the Barnes Maze (BM) test prospectively differing in aversiveness. Mice of the Spatial Learning study were of male sex and six months of age, and where subjected to a total of 10 (BM) or 15 (WM) trials. My particular interest was to elucidate if there are genotype by treatment interactions regarding blood plasma corticosterone levels and, if neurobiological equivalents in the brain to the found behavioral differences exist. For this purpose I carried out a quantitative immunohistochemistry study, investigating stem cell proliferation (via the marker Ki67) and aN (via the immature neuron marker NeuroD), as well as expression of the two immediate early genes (IEGs) Arc and cFos as a markers for neuronal activity in the hippocampus. The aim of the second study, the chronic mild stress (CMS) study had been to evaluate whether the innate divergent depression-like and anxiety-like behavior of mice with altered levels of brain 5-HT as a consequence of 5-HTT-deficiency is altered any further after being subjected to a CMS paradigm. Two cohorts of one-year-old female mice had been subjected to a variety of unpredictable stressors. In order to exclude possible interfering influences of behavioral testing on corticosterone levels and the outcome of the quantitative immunohistochemistry study the first cohort had been behaviorally tested after CMS while the second one had remained behaviorally untested. The objective of my part of the study was to find out about possible genotype by treatment interactions regarding blood plasma corticosterone as well as regarding aN in the hippocampus of the mice that had been subjected to CMS. For this purpose I performed a quantitative immunohistochemistry study in order to investigate the phenomenon of adult neurogenesis (via Ki67, NeuroD and the immature neuron marker DCX). Both studies led to interesting results. In the CMS study, we could not replicate the increased innate anxiety- and depression-like behavior in 5-HTT-/- mice known from the literature. However, with regard to the also well documented reduced locomotor activity, as well as the increased body weight of 5-HTT-/- mice compared to their 5-HTT+/- and 5-HTT+/+ littermates, we could demonstrate that CMS leads to increased explorative behavior in the Open Field Test and the Light/Dark Box primarily in 5-HTT+/- und 5-HTT+/+ mice. The Spatial learning study revealed that increased stress sensitivity of 5-HTT-/- mice leads to a poorer performance in the WM test in relation to their 5-HTT+/+ and 5-HTT+/- littermates. As the performance of 5-HTT-/- mice in the less aversive BM was undistinguishable from both other genotypes, we concluded that the spatial learning ability of 5-HTT-/- mice is comparable to that of both other genotypes. As far as stress reactivity is concerned, the experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels, irrespective of the 5-HTT genotype. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Blood plasma corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. In the CMS study, the corticosterone assessment of mice of cohort 1, which had undergone behavioral testing before sacrifice, resulted in significantly elevated corticosterone levels in 5-HTT-/- mice in relation to their 5-HTT+/+ controls. Contrary, corticosterone levels in mice of cohort 1, which had remained behaviorally untested, were shown to be elevated / increased after CMS experience regardless of the 5-HTT genotype. Regarding neuroplasticity, the Spatial Learning study revealed higher baseline levels of cFos- and Arc-ir cells as well as more proliferation (Ki67-ir cells) and higher numbers of neuronal progenitor cells (NeuroD-ir cells) in 5-HTT-/- compared to 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we could demonstrate that learning performance in the WM correlates with the extent of aN. The CMS study, in which aN (DCX-ir cells), has also been found to be increased in 5-HTT-/- mice compared to their 5-HTT+/+ littermates, yet only in control animals, did show hampered proliferation (Ki67-ir cells) in the hippocampus of all 5-HTT genotypes following CMS experience. Interestingly, the number of immature neurons (DCX-ir cells) was diminished exclusively in 5-HTT-/- mice in response to CMS. From the Spatial Learning study we concluded, that increased IEG expression and aN levels observed in the hippocampus of 5-HTT deficient mice can be the neurobiological correlate of emotion circuit dysfunction and heightened anxiety of these mice and that 5-HTT-/- animals per se display a "stressed" phenotype as a consequence of long-life 5-HTT deficiency. Due to the different age and sex of the mice in the two studies, they cannot be compared easily. However, although the results of the CMS study seem to contradict the results of the Spatial Learning study at the first glance, they do support the conclusion of the Spatial Learning study by demonstrating that although CMS does have an impact on 5-HTT-/- mice on the neurobiological level (e.g. manifesting in a decrease of DXC-ir cells following CMS) CMS experience cannot add onto their heightened inborn stress-level and is almost ineffective regarding further changes of the behavior of 5-HTT-deficient mice. I thus propose, that 5-HTT-/- mice as a result of lifelong altered 5-HT signaling display a stressed phenotype which resembles a state of lethargy and is paralleled by baseline heightened IEG expression and aN. It cannot be altered or increased by CMS, but it becomes most visible in stressful situations such as repeated spatial learning tests like the WM in which locomotor activity is required.}, subject = {Serotonin}, language = {en} } @phdthesis{Gmeiner2014, author = {Gmeiner, Florian}, title = {Der Einfluss der Neurotransmitter Dopamin, Serotonin und GABA sowie ihrer Transporter auf das Schlafverhalten von Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-99152}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In der vorliegenden Arbeit wurde der Einfluss von Dopamin, Serotonin und GABA auf das Schlafverhalten von Drosophila melanogaster genauer untersucht. Mit Hilfe von Mutanten in Wiederaufnahmetransportern f{\"u}r Dopamin und Serotonin konnte gezeigt werden, dass Dopamin und Serotonin entgegengesetzte Wirkungen auf die Schlafmenge der Fliegen haben. Dopamin hat eine schlafhemmende, Serotonin eine schlaff{\"o}rdernde Wirkung. Die Nutzung eines neuronal dopamindefizienten Fliegenstammes erweitert diese Erkenntnisse. Die Nutzung von RNAi zur Hinunterregulierung der Rezeptoren f{\"u}r Dopamin brachte keine weiteren Erkenntnisse, da sie zu keinem messbaren Effekt f{\"u}hren. Jedoch ergab eine parallel dazu durchgef{\"u}hrte Hinunterregulierung des GABABR2 Rezeptors, dass dieser maßgeblich f{\"u}r die Aufrechterhaltung des Schlafes in der zweiten H{\"a}lfte der Nacht verantwortlich ist. Es konnte gezeigt werden, dass f{\"u}r diese Aufgabe vor allem ihre Expression in den l-LNv Neuronen relevant ist. Dabei ist f{\"u}r die GABABR2 Rezeptoren kein Effekt, f{\"u}r Dopamin und Serotonin nur in geringen Ausmaß ein Effekt auf die Innere Uhr in Form von gering ver{\"a}nderter Periode zu beobachten. Durch eine Kombination der Transportermutanten f{\"u}r Dopamin und Serotonin mit dem intakten, als auch mutierten WHITE Transporter zeigte sich eine interessante Interaktion dieser drei Transporter bei der Regulation der Gesamtschlafmenge, wobei die white Mutation zu einer Reduzierung der Gesamtschlafmenge f{\"u}hrt. UPLC Messungen der St{\"a}mme ergaben, dass der Effekt von white vermutlich auf dessen Einfluss auf den beta-Alanyldopamingehalt der Fliegen basiert. beta-Alanyldopamin wird bei dem Transport von Dopamin {\"u}ber die Gliazellen durch das Enzym EBONY gebildet, dessen Mutation in der Kombination mit intaktem WHITE und mutiertem Dopamintransporter zu einer drastischen Reduktion des Schlafes w{\"a}hrend der Nacht f{\"u}hrt. Im Rahmen der Untersuchung konnte zudem gezeigt werden, dass entgegen des bisherigen Wissens aus Zellkulturstudien in Drosophila melanogaster kein beta-Alanylserotonin gebildet wird. M{\"o}glicherweise wird nur Dopamin, nicht jedoch Serotonin {\"u}ber die Gliazellen recycelt. Dies ist ein interessanter Unterschied, der sowohl eine zeitliche, als auch lokale Feinregulation der Gegenspieler Dopamin und Serotonin erm{\"o}glicht. Die Untersuchung der Dimerpartner BROWN und SCARLET zeigte, dass lediglich BROWN zu einer Reduktion des Schlafes f{\"u}hrt. Ein Effekt, der auch in einer Fliegenlinie mit spontaner white Mutation beobachtet werden konnte. Die genaue Funktion dieses Heterodimertransporters und seine neuronale Lokalisation wurden im Rahmen dieser Arbeit noch nicht gekl{\"a}rt. Dennoch liegt eine Funktion als Dopamin- oder beta-Alanyldopamintransporter in Gliazellen auf Grund der ermittelten Ergebnisse nahe. Zus{\"a}tzlich konnte zum ersten Mal in Drosophila melanogaster eine Funktion der Amintransporter bei der Anpassung der Inneren Uhr an extreme kurze bzw. lange Photoperioden gezeigt werden. Eine anatomische Lokalisierung des WHITE Transporters im Gehirn von Drosophila melanogaster, die weitere Charakterisierung der Rolle des WHITE/BROWN Dimers und die Zuordnung bestimmter dopaminerger und serotonerger Neurone bei der Modulation der Aktivit{\"a}tsmaxima stellen spannende Fragen f{\"u}r zuk{\"u}nftige Arbeiten dar.}, subject = {Taufliege}, language = {de} }