@phdthesis{Thumati2008, author = {Thumati, Naresh Reddy}, title = {Characterization of new protein kinases of the EVH1 domain containing protein VASP and identification of binding partners for a new EVH1 domain of the Spred2 protein : A case study on protein interactions of EVH1 domain containing proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26617}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Protein interactions as mediated by catalytic or non-catalytic protein domains contribute to cellular signal transduction processes by covalent protein modification of or non-covalent binding to interaction partners. Ena/VASP homology 1 (EVH1) domains are found in different signal transduction proteins as N-terminal non-catalytic adaptor modules of ~ 115 amino acids sharing a common fold. By targeting their host proteins to subcellular sites of action they are involved in several signalling cascades which include protein phosphorylation and cytoskeletal reorganisation. In this study, protein interactions of the two EVH1 domain containing proteins VASP and Spred2 were studied according to their involvement in different and non-overlapping signal transduction pathways of the cell. EVH1 domains were first described in the Ena/VASP protein family with the Vasodilator-stimulated phosphoprotein VASP being its founding member. As a cytoskeleton-associated protein VASP not only interacts with different proteins of the actin network but it is also a substrate for cAMP- and cGMP-dependent protein kinases. However the full complement of protein kinases targeting VASP as their substrate is still unknown. Here we used mouse cardiac fibroblast (MCFB) cells in order to study the phosphorylation status of VASP and identify new candidate protein kinases involved after serum stimulation of these cells. Using phosphosite-specific antibodies we found that serum stimulation induces a phosphorylation of VASP at Ser-157 in a time-dependent manner reaching its maximum after 90 min of stimulation. We developed an interaction graph model of possible candidate protein kinases involved. Using a pharmacological perturbation analysis with different combinations of specific protein kinase inhibitors and activators we excluded any contribution of cGMP-dependent protein kinase and Rho kinases to this process and identified a combined action of classical isoforms of PKCs and PKA in serum-stimulated VASP phosphorylation at Ser-157 positioning PKC upstream of PKA in this signalling pathway. We hypothesise that PKC receives an external stimulatory signal upon serum stimulation of MCFB cells which is passed either directly or indirectly to PKA which finally phosphorylates VASP at Ser-157. A new EVH1 domain has been described recently in the Spred proteins (Sprouty related proteins containing an EVH1 domain) which are inhibitors of the Ras/Raf/MAP kinase pathway. Our laboratory has been involved in the elucidation of the atomic structure of the human Spred2 EVH1 domain by protein NMR spectroscopy (PDB 2JP2; 2007). A positively charged binding interface of this EVH1 domain suggests an interaction with negatively charged ligands; however no interaction partners of this domain have been described so far. In the second part of this study, we used different genetic and biochemical screening methods to search for ligands of the Spred2 EVH1 domain. A bacterial two-hybrid system was established using a physically well characterized interaction of the VASP EVH1 domain with a panel of its ActA binding peptides as positive controls to screen a human brain cDNA expression library at different stringencies for candidate Spred2 EVH1 interaction partners. However none of the clones isolated could be genetically and physically validated to support Spred2 EVH1 specific interactions. An in-vitro screening of a 9-mer phage display peptide library using purified GST-Spred2 EVH1 fusion protein was performed together with a Fyn-SH3 fusion protein as a positive control. In contrast to the Fyn-SH3 domain the majority of phages isolated with the Spred2 EVH1 domain either carried no inserts or inserts with stop codons suggesting a highly non-specific interaction of the phage coat protein with the latter domain but neither the Fyn-SH3 domain nor the GST moiety. Isolation of a 13-mer proline-rich sequence was particularly surprising in this context. In order to address possible interactions of the Spred2 EVH1 domain with non-peptidergic ligands protein-lipid interaction assays were performed. Quantitative binding studies to purified Spred2 EVH1 using a liposome sedimentation assay however excluded any interaction of candidate phospholipids of the phosphatidyl inositol phosphate class with the Spred2 EVH1 domain. A natively folded and thus binding-competent conformation of the purified proteins used was assessed independently by 1H protein NMR spectroscopy. In summary the cumulative evidence of our genetic and biochemical screening experiments suggests that the still elusive Spred2 EVH1 ligand(s) may be formed of hydrophobic peptide epitopes larger than nine amino acids in size and carrying negative charge(s). A phosphorylation of Spred2 EVH1 binding epitopes by a post-translational modification should be seriously considered in future experiments.}, subject = {VASP}, language = {en} }