@article{LvZhangZhuetal.2015, author = {Lv, Xiaoqun and Zhang, Lingyun and Zhu, Yanyan and Said, Harun M. and Shi, Jimin and Xu, Guoxiong}, title = {Regulative effect of Nampt on tumor progression and cell viability in human colorectal cancer}, series = {Journal of Cancer}, volume = {6}, journal = {Journal of Cancer}, number = {9}, doi = {10.7150/jca.12341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144516}, pages = {849-858}, year = {2015}, abstract = {Colorectal cancer (CRC) is the third most common cancer disease. Here we examined Nampt expression in patients with CRC and the effect of Nampt on cell viability in CRC cells. Nampt protein was overexpressed in colorectal adenoma as well as colorectal carcinoma. The immunoreactive staining of Nampt was negative in the adjacent normal colorectal tissue, weak in colorectal adenoma, and strong in colorectal carcinoma, which may represent tumor progression. Further evaluation of clinical data showed that Nampt expression was not correlated with the clinicopathological characteristics of CRC. Additionally, our in vitro studies demonstrated that Nampt promotes CRC cell viability, whereas the Nampt inhibitor FK866 suppressed CRC cell viability, which was in concordance with the previous studies in other cancer cells. Treatment with Nampt-siRNA reduced the Nampt protein expression resulting in the inhibition of the cell viability of HCT116 and Caco2. Thus, the involvement of Nampt in cell growth indicates that Nampt may play an important role in colorectal tumorigenesis. As a consequence, our results suggest that Nampt may be considered as a progression marker of colorectal tumor and a potentially therapeutic target for the treatment of CRC.}, language = {en} } @article{KangManousakiFranchinietal.2015, author = {Kang, Ji Hyoun and Manousaki, Tereza and Franchini, Paolo and Kneitz, Susanne and Schartl, Manfred and Meyer, Axel}, title = {Transcriptomics of two evolutionary novelties: how to make a sperm-transfer organ out of an anal fin and a sexually selected "sword" out of a caudal fin}, series = {Ecology and Evolution}, volume = {5}, journal = {Ecology and Evolution}, number = {4}, doi = {10.1002/ece3.1390}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144139}, pages = {848-864}, year = {2015}, abstract = {Swords are exaggerated male ornaments of swordtail fishes that have been of great interest to evolutionary biologists ever since Darwin described them in the Descent of Man (1871). They are a novel sexually selected trait derived from modified ventral caudal fin rays and are only found in the genus Xiphophorus. Another phylogenetically more widespread and older male trait is the gonopodium, an intromittent organ found in all poeciliid fishes, that is derived from a modified anal fin. Despite many evolutionary and behavioral studies on both traits, little is known so far about the molecular mechanisms underlying their development. By investigating transcriptomic changes (utilizing a RNA-Seq approach) in response to testosterone treatment in the swordtail fish, Xiphophorus hellerii, we aimed to better understand the architecture of the gene regulatory networks underpinning the development of these two evolutionary novelties. Large numbers of genes with tissue-specific expression patterns were identified. Among the sword genes those involved in embryonic organ development, sexual character development and coloration were highly expressed, while in the gonopodium rather more morphogenesis-related genes were found. Interestingly, many genes and genetic pathways are shared between both developing novel traits derived from median fins: the sword and the gonopodium. Our analyses show that a larger set of gene networks was co-opted during the development and evolution of the older gonopodium than in the younger, and morphologically less complex trait, the sword. We provide a catalog of candidate genes for future efforts to dissect the development of those sexually selected exaggerated male traits in swordtails.}, language = {en} }