@article{DietlSchwinnDietletal.2016, author = {Dietl, Sebastian and Schwinn, Stefanie and Dietl, Susanne and Riedl, Simone and Deinlein, Frank and Rutkowski, Stefan and von Bueren, Andre O. and Krauss, J{\"u}rgen and Schweitzer, Tilmann and Vince, Giles H. and Picard, Daniel and Eyrich, Matthias and Rosenwald, Andreas and Ramaswamy, Vijay and Taylor, Michael D. and Remke, Marc and Monoranu, Camelia M. and Beilhack, Andreas and Schlegel, Paul G. and W{\"o}lfl, Matthias}, title = {MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties}, series = {BMC Cancer}, volume = {16}, journal = {BMC Cancer}, number = {115}, doi = {10.1186/s12885-016-2170-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145877}, year = {2016}, abstract = {Background Medulloblastoma is the most common malignant brain tumor in children and can be divided in different molecular subgroups. Patients whose tumor is classified as a Group 3 tumor have a dismal prognosis. However only very few tumor models are available for this subgroup. Methods We established a robust orthotopic xenograft model with a cell line derived from the malignant pleural effusions of a child suffering from a Group 3 medulloblastoma. Results Besides classical characteristics of this tumor subgroup, the cells display cancer stem cell characteristics including neurosphere formation, multilineage differentiation, CD133/CD15 expression, high ALDH-activity and high tumorigenicity in immunocompromised mice with xenografts exactly recapitulating the original tumor architecture. Conclusions This model using unmanipulated, human medulloblastoma cells will enable translational research, specifically focused on Group 3 medulloblastoma.}, language = {en} } @article{SalzmannManriqueBremmHueneckeetal.2018, author = {Salzmann-Manrique, Emilia and Bremm, Melanie and Huenecke, Sabine and Stech, Milena and Orth, Andreas and Eyrich, Matthias and Schulz, Ansgar and Esser, Ruth and Klingebiel, Thomas and Bader, Peter and Herrmann, Eva and Koehl, Ulrike}, title = {Joint Modeling of Immune Reconstitution Post Haploidentical Stem Cell Transplantation in Pediatric Patients With Acute Leukemia Comparing CD34(+)-Selected to CD3/CD19-Depleted Grafts in a Retrospective Multicenter Study}, series = {frontiers in Immunology}, volume = {9}, journal = {frontiers in Immunology}, doi = {10.3389/fimmu.2018.01841}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227302}, pages = {1841, 1-12}, year = {2018}, abstract = {Rapid immune reconstitution (IR) following stem cell transplantation (SCT) is essential for a favorable outcome. The optimization of graft composition should not only enable a sufficient IR but also improve graft vs. leukemia/tumor effects, overcome infectious complications and, finally, improve patient survival. Especially in haploidentical SCT, the optimization of graft composition is controversial. Therefore, we analyzed the influence of graft manipulation on IR in 40 patients with acute leukemia in remission. We examined the cell recovery post haploidentical SCT in patients receiving a CD34(+)-selected or CD3/CD19-depleted graft, considering the applied conditioning regimen. We used joint model analysis for overall survival (OS) and analyzed the dynamics of age-adjusted leukocytes; lymphocytes; monocytes; CD3(+), CD3(+) CD4(+), and CD3(+) CD8(+) T cells; natural killer (NK) cells; and B cells over the course of time after SCT. Lymphocytes, NK cells, and B cells expanded more rapidly after SCT with CD34(+)-selected grafts (P = 0.036, P = 0.002, and P < 0.001, respectively). Contrarily, CD3(+) CD4(+) helper T cells recovered delayer in the CD34 selected group (P = 0.026). Furthermore, reduced intensity conditioning facilitated faster immune recovery of lymphocytes and T cells and their subsets (P < 0.001). However, the immune recovery for NK cells and B cells was comparable for patients who received reduced-intensity or full preparative regimens. Dynamics of all cell types had a significant influence on OS, which did not differ between patients receiving CD34(+)-selected and those receiving CD3/CD19-depleted grafts. In conclusion, cell reconstitution dynamics showed complex diversity with regard to the graft manufacturing procedure and conditioning regimen.}, language = {en} }