@article{SteinhardtWiercinskaPhametal.2020, author = {Steinhardt, M. J. and Wiercinska, E. and Pham, M. and Grigoleit, G. U. and Mazzoni, A. and Da-Via, M. and Zhou, X. and Meckel, K. and Nickel, K. and Duell, J. and Krummenast, F. C. and Kraus, S. and Hopkinson, C. and Weissbrich, B. and M{\"u}llges, W. and Stoll, G. and Kort{\"u}m, K. M. and Einsele, H. and Bonig, H. and Rasche, L.}, title = {Progressive multifocal leukoencephalopathy in a patient post allo-HCT successfully treated with JC virus specific donor lymphocytes}, series = {Journal of Translational Medicine}, volume = {18}, journal = {Journal of Translational Medicine}, doi = {10.1186/s12967-020-02337-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229307}, year = {2020}, abstract = {Background Progressive multifocal leukoencephalopathy is a demyelinating CNS disorder. Reactivation of John Cunningham virus leads to oligodendrocyte infection with lysis and consequent axonal loss due to demyelination. Patients usually present with confusion and seizures. Late diagnosis and lack of adequate therapy options persistently result in permanent impairment of brain functions. Due to profound T cell depletion, impairment of T-cell function and potent immunosuppressive factors, allogeneic hematopoietic cell transplantation recipients are at high risk for JCV reactivation. To date, PML is almost universally fatal when occurring after allo-HCT. Methods To optimize therapy specificity, we enriched JCV specific T-cells out of the donor T-cell repertoire from the HLA-identical, anti-JCV-antibody positive family stem cell donor by unstimulated peripheral apheresis [1]. For this, we selected T cells responsive to five JCV peptide libraries via the Cytokine Capture System technology. It enables the enrichment of JCV specific T cells via identification of stimulus-induced interferon gamma secretion. Results Despite low frequencies of responsive T cells, we succeeded in generating a product containing 20 000 JCV reactive T cells ready for patient infusion. The adoptive cell transfer was performed without complication. Consequently, the clinical course stabilized and the patient slowly went into remission of PML with JCV negative CSF and containment of PML lesion expansion. Conclusion We report for the first time feasibility of generating T cells with possible anti-JCV activity from a seropositive family donor, a variation of virus specific T-cell therapies suitable for the post allo transplant setting. We also present the unusual case for successful treatment of PML after allo-HCT via virus specific T-cell therapy.}, language = {en} } @article{BraeuningerKleinschnitzStoll2010, author = {Braeuninger, Stefan and Kleinschnitz, C. and Stoll, G.}, title = {Interleukin-18 does not influence infarct volume or functional outcome in the early stage after transient focal brain ischemia in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68141}, year = {2010}, abstract = {Interleukin-18 (IL-18) is a proinflammatory cytokine of the interleukin-1 family which is upregulated after cerebral ischemia. The functional role of IL-18 in cerebral ischemia is unknown. In the present study, we compared infarct size in IL-18 knock-out and wild-type mice 24 hours and 48 hours after 1-hour transient middle cerebral artery occlusion (tMCAO). Moreover, the functional outcome was evaluated in a modified Bederson score, foot fault test and grip test. There were no significant differences in infarct size or functional outcome tests between wild-type and IL-18 knock-out mice. These data indicate that the early inflammatory response to cerebral ischemia does not involve IL-18, in contrast to other interleukin-1 family members such as interleukin-1.}, subject = {Interleukin-18}, language = {en} } @article{PhamHelluyBraeuningeretal.2010, author = {Pham, Mirko and Helluy, X. and Braeuninger, S. and Jakob, P. and Stoll, G. and Kleinschnitz, Christoph and Bendszus, M.}, title = {Outcome of experimental stroke in C57Bl/6 and Sv/129 mice assessed by multimodal ultra-high field MRI}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68115}, year = {2010}, abstract = {Transgenic mice bred on C57Bl/6 or Sv/129 genetic background are frequently used in stroke research. It is well established that variations in cerebrovascular anatomy and hemodynamics can influence stroke outcome in different inbred mouse lines. We compared stroke development in C57Bl/6 and Sv/129 mice in the widely used model of transient middle cerebral artery occlusion (tMCAO) by multimodal ultra-high field magnetic resonance imaging (MRI). C57Bl/6 and Sv/129 mice underwent 60 min of tMCAO and were analyzed by MRI 2 h and 24 h afterwards. Structural and functional images were registered to a standard anatomical template. Probability maps of infarction were rendered by automated segmentation from quantitative T2-relaxometric images. Whole-brain segmentation of infarction was accomplished manually on high-resolution T2-weighted (T2-w) RARE images. Cerebral perfusion (cerebral blood flow, CBF) was measured quantitatively by modified continuous arterial-spin-labeling (CASL) and apparent diffusion coefficients (ADC) by spin-echo diffusion-weighted imaging (DWI). Probabilities of cortical (95.1\% ± 3.1 vs. 92.1\% ± 2.5; p > 0.05) and subcortical (100\% vs. 100\%; p > 0.05) infarctions at 24 h were similar in both groups as was the whole-brain volumetric extent of cerebral infarction. In addition, CBF and ADC values did not differ between C57Bl/6 and Sv/129 mice at any time point or region of interest. The C57Bl/6 and Sv/129 genetic background is no major confounding factor of infarct size and cerebral perfusion in the tMCAO model.}, subject = {NMR-Tomographie}, language = {en} } @article{KraftSchwarzPochetetal.2010, author = {Kraft, P. and Schwarz, T. and Pochet, L. and Stoll, G. and Kleinschnitz, Christoph}, title = {COU254, a specific 3-carboxamide-coumarin inhibitor of coagulation factor XII, does not protect mice from acute ischemic stroke}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68103}, year = {2010}, abstract = {Background: Anticoagulation is an important means to prevent from acute ischemic stroke but is associated with a significant risk of severe hemorrhages. Previous studies have shown that blood coagulation factor XII (FXII)- deficient mice are protected from pathological thrombus formation during cerebral ischemia without bearing an increased bleeding tendency. Hence, pharmacological blockade of FXII might be a promising and safe approach to prevent acute ischemic stroke and possibly other thromboembolic disorders but pharmacological inhibitors selective over FXII are still lacking. In the present study we investigated the efficacy of COU254, a novel nonpeptidic 3-carboxamide-coumarin that selectively blocks FXII activity, on stroke development and post stroke functional outcome in mice. Methods: C57Bl/6 mice were treated with COU254 (40 mg/kg i.p.) or vehicle and subjected to 60 min transient middle cerebral artery occlusion (tMCAO) using the intraluminal filament method. After 24 h infarct volumes were determined from 2,3,5-Triphenyltetrazoliumchloride(TTC)-stained brain sections and functional scores were assessed. Hematoxylin and eosin (H\&E) staining was used to estimate the extent of neuronal cell damage. Thrombus formation within the infarcted brain areas was analyzed by immunoblot. Results: Infarct volumes and functional outcomes on day 1 after tMCAO did not significantly differ between COU254 pre-treated mice or untreated controls (p > 0.05). Histology revealed extensive ischemic neuronal damage regularly including the cortex and the basal ganglia in both groups. COU254 treatment did not prevent intracerebral fibrin(ogen) formation. Conclusions: COU254 at the given concentration of 40 mg/kg failed to demonstrate efficacy in acute ischemic stroke in this preliminary study. Further preclinical evaluation of 3-carboxamide-coumarins is needed before the antithrombotic potential of this novel class of FXII inhibitors can be finally judged.}, subject = {Schlaganfall}, language = {en} }