@phdthesis{Jung2023, author = {Jung, Johannes}, title = {Wechselwirkungen zwischen Kantenzust{\"a}nden auf dem topologisch kristallinen Isolator Pb\(_{1-x}\)Sn\(_x\)Se}, doi = {10.25972/OPUS-29861}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Einerseits besteht die einfachste M{\"o}glichkeit zum Ladungs- und Informationstransport zwischen zwei Punkten in deren direkter Verbindung durch eindimensionale Kan{\"a}le. Andererseits besitzen topologische Materialien exotische und {\"a}ußerst vorteilhafte Eigenschaften, weshalb es nahe liegt, dass schon bald neue Anwendungen aus ihnen realisiert werden. Wenn diese beiden Entwicklungen zusammenkommen, dann ist ein grundlegendes Verst{\"a}ndnis von Quanteninterferenz oder Hybridisierungseffekten in eindimensionalen, topologischen Kan{\"a}len von fundamentaler Wichtigkeit. Deshalb werden in der vorliegenden Arbeit Wechselwirkungen von eindimensionalen, topologisch gesch{\"u}tzten Kantenzust{\"a}nden, die an ungeradzahligen Stufenkanten auf der (001)-Oberfl{\"a}che von Pb1-xSnxSe auftreten, untersucht. Aufgrund der lateralen Lokalisierung auf wenige Nanometer um eine Stufenkante herum und der Notwendigkeit zwischen gerad- und ungeradzahligen Stufenkantenh{\"o}hen zu unterscheiden, bieten sich die Rastertunnelmikroskopie und -spektroskopie als Methoden an. Die neu entdeckten Kopplungs- bzw. Wechselwirkungseffekte zwischen benachbarten Kantenzust{\"a}nden treten auf, sobald der Stufe zu Stufe Abstand einen kritischen Wert von dkri ≈ 25nm unterschreitet. Dieses Kriterium kann durch verschiedene r{\"a}umliche Anordnungen von Stufenkanten erf{\"u}llt werden. Infolgedessen werden sich kreuzende, parallel verlaufende und zusammenlaufende Stufenkanten genauer untersucht. Bei letzteren ver{\"a}ndert sich entlang der Struktur kontinuierlich der Abstand und damit die Kopplungsst{\"a}rke zwischen den beiden Randkan{\"a}len. Infolgedessen wurden drei Koppelungsregime identifiziert. (I) Ausgehend von einer schwachen Wechselwirkung zeigt der f{\"u}r die Kantenzust{\"a}nde charakteristische Peak im Spektrum zun{\"a}chst eine Verbreiterung und Verminderung der Intensit{\"a}t. (II) Mit weiter zunehmender Wechselwirkung beginnt sich der Zustand in zwei Peaks aufzuspalten, sodass ab dkri ≈ 15nm an beiden Stufenkanten durchgehen eine Doppelpeak zu beobachten ist . Mit weiter abnehmendem Abstand erreicht die Aufspaltung Werte von einigen 10 meV, w{\"a}hrend sich die Intensit{\"a}t weiter reduziert. (III) Sobald zwei Stufenkanten weniger als etwa 5nm voneinander getrennt sind, konvergieren aufgrund der schwindenden Intensit{\"a}t und des sinkenden energetischen Abstands der beiden Peaks zu den van Hove Singularit{\"a}ten die Spektren an den Stufenkanten gegen das Spektrum {\"u}ber einer Terrasse. i Die Aufspaltung verl{\"a}uft in den Bereichen I und II asymmetrisch, d. h. ein Peak verbleibt ungef{\"a}hr bei der Ausgangsenergie, w{\"a}hrend der andere mit zunehmender Kopplung immer weiter weg schiebt. Bez{\"u}glich der Asymmetrie kann kein Unterschied festgestellt werden, ob die zusammenlaufenden Stufenkanten eine Insel oder Fehlstelleninsel bilden oder ob die Stufenkanten sogar g{\"a}nzlich parallel verlaufen. Es zeigt sich keine Pr{\"a}ferenz, ob zun{\"a}chst der niederenergetische oder der hochenergetische Peak schiebt. Erst im Regime starker Kopplung (III) kann beobachtet werden, dass beide Peaks die Ausgangsenergie deutlich verlassen. Im Gegensatz dazu kann bei sich kreuzenden Stufen ein erheblicher Einfluss der Geometrie, in Form des eingeschlossenen Winkels, auf das Spektrum beobachtet werden. Unabh{\"a}ngig vom Winkel existiert am Kreuzungspunkt selbst kein Kantenzustand mehr. Die Zust{\"a}nde an den vier Stufen beginnen, abh{\"a}ngig vom Winkel, etwa 10-15nm vor dem Kreuzungspunkt abzuklingen. {\"U}berraschenderweise zeigt sich dabei, dass im Fall rechtwinkliger Stufen gar keine Aufspaltung zu beobachten ist, w{\"a}hrend bei allen anderen Winkeln ein Doppelpeak festgestellt werden kann. Diese Entdeckung deutet auf Orthogonalit{\"a}t bez{\"u}glich einer Quantenzahl bei den beteiligten Kantenzust{\"a}nde hin. Neben einer nur theoretisch vorhergesagten Spinpolarisation kann dieser Effekt auch von dem orbitalem Charakter der beteiligten Dirac-Kegel verursacht sein. Da der topologische Schutz in Pb1-xSnxSe durch Kristallsymmetrien garantiert ist, wird als letzter intrinsischer Effekt der Einfluss von eindimensionalen Defekten auf die Kantenzust{\"a}nde untersucht. Ber{\"u}cksichtigt werden dabei ein nicht n{\"a}her klassifizierbarer, oberfl{\"a}chennaher Defekt und Schraubversetzungen. In beiden F{\"a}llen kann ebenfalls eine Aufspaltung des Kantenzustands in einen Doppelpeak gezeigt werden. Im zweiten Teil dieser Arbeit werden die Grundlagen f{\"u}r eine Wiederverwendung von (Pb,Sn)Se-Oberfl{\"a}chen bei zuk{\"u}nftige Experimenten mit (magnetischen) Adatomen geschaffen. Durch Kombination von Inoenzerst{\"a}ubung und Tempern wird dabei nicht nur eine gereinigte Oberfl{\"a}che erzeugt, sondern es kann auch das Ferminiveau gezielt erh{\"o}ht oder gesenkt werden. Dieser Effekt beruht auf eine Modifikation der Sn- Konzentration und der von ihr kontrollierten Anzahl an Defektelektronen. Als letztes sind erste Messungen an Cu- und Fe-dotierte Proben gezeigt. Durch die Adatome tritt eine n-Dotierung auf, welche den Dirac-Punkt des Systems in Richtung des Ferminiveaus verschiebt. Sobald er dieses erreicht hat kommt es zu Wechselwirkungsph{\"a}nomenen an freistehenden Stufenkanten. Dies f{\"u}hrt zu einer Doppelpeakstruktur mit einer feinen Aufspaltung von wenigen meV. Das Ph{\"a}nomen ist auf ein schmales Energiefenster beschr{\"a}nkt, bei dem die Lage des Dirac-Punkts nur etwa 5 meV (in beide Richtungen) von der des Ferminiveaus abweichen darf.}, subject = {Topologischer Isolator}, language = {de} }