@phdthesis{Luebtow2020, author = {L{\"u}btow, Michael M.}, title = {Structure-property relationships in poly(2-oxazoline)/poly(2-oxazine) based drug formulations}, doi = {10.25972/OPUS-19338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193387}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {According to estimates, more than 40\% of all new chemical entities developed in pharmaceutical industry are practically insoluble in water. Naturally, the demand for excipients which increase the water solubility and thus, the bioavailability of such hydrophobic drugs is enormous. Poly(2-oxazoline)s (POx) are currently intensively discussed as highly versatile class of biomaterials. Although selected POx based micellar drug formulations exhibit extraordinarily high drug loadings > 50 wt.\% enabling high anti-tumor efficacies in vivo, the formulation of other hydrophobic compounds has failed. This casts doubt on the general understanding in which a hydrophobic active pharmaceutical ingredient is dissolved rather unspecifically in the hydrophobic core of the micelles following the fundamental concept of "like dissolves like". Therefore, a closer look at the interactions between all components within a formulation becomes increasingly important. To do so, a large vehicle platform was synthesized, loaded with various hydrophobic drugs of different structure, and the formulations subsequently characterized with conventional and less conventional techniques. The obtained in-depth insights helped to develop a more thorough understanding about the interaction of polymer and incorporated API finally revealing morphologies deviating from a classical core/shell structure. During these studies, the scarcely investigated polymer class of poly(2-oxazine)s (POzi) was found as promising drug-delivery vehicle for hydrophobic drugs. Apart from this fundamental research, the anti-tumor efficacy of the two APIs curcumin and atorvastatin has been studied in more detail. To increase the scope of POx and POzi based formulations designed for intravenous administration, a curcumin loaded hydrogel was developed as injectable drug-depot.}, subject = {Polymere}, language = {en} }