@phdthesis{Stahl2005, author = {Stahl, Rainer}, title = {Electroactive Conjugated Polymers as Charge-Transport Materials for Optoelectronic Thin-Film Devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-16980}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In this work the electrochemical and spectroelectrochemical properties of a series of pi-conjugated organic polymers were studied. The polymers were deposited on platinum electrodes or ITO-coated glass substrates by potentiodynamic electro-polymerisation of the corresponding monomeric precursor molecules. The electro-chemical and photophysical properties of the triarylborane monomers were studied in detail in order to estimate possible influences on the behaviour of the corresponding polymer. The first part of this work aimed at the synthesis and investigation of conjugated donor-acceptor polymers which combine the prerequisites of an OLED within one material: the transport of positive and negative charges and the formation of emissive excited states. With the carbazole-substituted oxadiazoles 1-3 it was shown that on the one hand the carbazole functionality is suitable for enabling the electrochemical polymerisation of the monomers and on the other hand it facilitates reversible p-doping of the resultant polymers. Although n-doping of poly-1-poly-3 is possible due to the electron-deficient oxadiazole rings, it causes the continuous degradation of these electron-acceptor units. Interestingly, this process does not influence the capability of p-doping of the polymers. With respect to its electrochemical and spectroelectrochemical properties the behaviour of the borane polymer poly-4 is absolutely identical with that of the oxadiazole polymers. Moreover, the optical excitation of poly-4 in the solid state leads to the emission of blue-green light which suggests that this polymer might also possess electroluminescent properties. AFM-measurements of poly-4 films on ITO-coated glass substrates revealed, that the film thickness can be controlled to a certain extent by the number of polymerisation redox cycles. It was shown from the electrochemical and photophysical properties of the triarylboranes 4-6 that the pi-pi-interaction between boron and nitrogen atoms is comparably weak in these molecules. This leads to an unexpected ground-state polarisation with a partially positive boron atom and a partially negative nitrogen atom. Moreover, it was found that TAB 4 possesses a lower symmetry than D3 in solution and that excitation energy can be transferred amongst the three subchromophores of 4. By titration experiments it was also demonstrated that TAB 4 can reversibly bind fluoride ions and that the binding event significantly influences the optical absorption characteristics of the chromophore. It can be assumed, that the above mentioned properties, which have a profound influence on the photophysical behaviour of these triarylborane chromophores, also determine the behaviour of the corresponding polymer in a solid state environment. The aim of the second part of this work was the investigation of purely n-conducting materials based on electron-deficient borane and viologen polymers. The corresponding precursor molecules should be polymerised on platinum electrodes by reductive electropolymerisation. However, a reductive polymerisation was not possible for the borane monomer 19 which is thought to be due to a strong localisation of the unpaired electron on the central boron atom of the radical anion. An electropolymerisation of the cyano-substituted bispyridinio-compound 17 failed because of the poor quality of CN- as a leaving group. Thus, a synthesis of the analogous isomer 18 was developed, in which the cyano-substituents were exchanged by the better leaving group Cl-. The viologen polymer poly-18, which can be regarded as an electron-deficient iso-electronic analogue of poly(para-phenylene), was successfully deposited on a platinum electrode by reductive electropolymerisation of 18. Poly-18 can be reversibly n-doped at comparably low potentials; however, at higher potentials the polymer is overcharged and destroyed irreversibly. As the synthetic strategy for 18 allows the variation of both spacer unit and leaving group in the last two steps of the reaction sequence, a series of analogous compounds can be easily synthesised using this route.}, subject = {Polymerhalbleiter}, language = {en} }