@phdthesis{Zimmermann2018, author = {Zimmermann, Christian}, title = {Halbleiterlaser mit lateralem R{\"u}ckkopplungsgitter f{\"u}r metrologische Anwendungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159618}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In der vorliegenden Arbeit wurde angestrebt, die Eigenschaften komplexgekoppelter DFB-Laser bez{\"u}glich ihrer Nutzung f{\"u}r metrologische Untersuchungen zu analysieren und zu verbessern. Hierf{\"u}r wurden die r{\"a}umlichen Emissionseigenschaften der lateral komplexgekoppelten DFB-Laser in ausgiebigen Studien diskutiert. F{\"u}r kommerziell erh{\"a}ltliche Laser wurde daraufhin das Fernfeld sowohl in lateraler als auch vertikaler Richtung berechnet. Die entsprechenden Fernfeldmessungen konnten die Theorie best{\"a}tigen und wie erwartet, waren die Divergenzwinkel mit 52° FWHM in der Wachstumsrichtung und 12° FWHM in lateraler Richtung (vgl. Abb. 6.4 und 6.5) sehr unterschiedlich und zeugen von einer großen Differenz in den Fernfeldwinkeln. Mit {\"U}berlegungen zu dem optischen bzw. elektrischen Einschlusspotential im Hinblick auf die ver{\"a}nderte Fernfeldsituation wurde zun{\"a}chst die reine Halbleiterlaserschichtfolge optimiert. Der Divergenzwinkel in Wachstumsrichtung wurde um mehr als 50\% auf 25° FWHM gesenkt. Damit konnte die Asymmetrie des Fernfeldes um einen Faktor von mehr als 4 reduziert werden. Strahlg{\"u}teuntersuchungen zeigten ein nahezu beugungsbegrenztes Gaußsches Strahlprofil in der langsamen Achse mit einem M2-Wert von 1,13 (Abb. 6.3). Eine weitere Untersuchung betraf die Linienbreitenabh{\"a}ngigkeit solcher Laser von ihrer Ausgangsleistung, der Resonatorl{\"a}nge, der Facettenverg{\"u}tung und der Gitterkopplung. Die erste Beobachtung betraf die Verschm{\"a}lerung der Linienbreite mit ansteigender Ausgangsleistung bis hin zu einer erneuten Verbreiterung (Rebroadening) der Linienbreite (siehe Abb. 7.3). Der Einfluss auf die Linienbreite durch eine Ver{\"a}nderung der Resonatorl{\"a}nge ließ sich sehr gut mit der Theorie vergleichen und so erbrachte eine Verdopplung der Resonatorl{\"a}nge eine Verschm{\"a}lerung der Linienbreite um mehr als einen Faktor 3. Die Verl{\"a}ngerung der Kavit{\"a}t beg{\"u}nstigte den negativen Effekt des sog. Rebroadenings nicht, da bei der verwendeten Technologie der lateral komplexen Kopplung der Index-Beitrag an der R{\"u}ckkopplung sehr klein ist. Im Falle reiner Indexkopplung w{\"a}re dies durch die ver{\"a}nderte κ · L-Lage deutlich zu sp{\"u}ren. Ein weiterer, oben auch angesprochener Vorteil der komplexen Kopplung ist, dass die Facettenreflektivit{\"a}ten einen wesentlich kleineren Einfluss auf die DFB-Ausbeute und auf deren Eigenschaften haben als bei der reinen Indexkopplung. Dies l{\"a}sst sich ausnutzen, um die Photonenlebensdauer in der Kavit{\"a}t zu erh{\"o}hen ohne negativ die DFB-Ausbeute zu beeinflussen. In dieser Arbeit wurde bei verschiedenen L{\"a}ngen die reine gebrochene Facette mit einer verg{\"u}teten verglichen und der Einfluss auf die Linienbreite analysiert. Die Frontfacette wurde durch eine Passivierung bei ca. 30\% gehalten und die R{\"u}ckfacette durch einen doppelten Reflektor auf ca. 85\% gesetzt. Daraus resultierte eine Reduktion der Linienbreite um mehr als die H{\"a}lfte. Neben diesen Ergebnissen wurde auch der Einfluss der komplexen Kopplung untersucht. Da die durch das Gitter zus{\"a}tzlich eingebrachten Verluste zu einer Vergr{\"o}ßerung der Linienbreiten beitragen, wird bei einem gr{\"o}ßeren geometrischen Gitter{\"u}berlapp das Frequenzrauschen auch entsprechend steigen. Dies ließ sich auch im Experiment best{\"a}tigen. Zudem wurde eine L{\"a}ngenabh{\"a}ngigkeit dieses Effektes festgestellt. Die Reduzierung der Linienbreite bei l{\"a}ngeren Bauteilen ist deutlich ausgepr{\"a}gter als bei k{\"u}rzeren. So ist bei {\"a}hnlicher Verringerung des Gitter{\"u}berlappes bei einem 900 μm langen Bauteil eine Linienbreitenreduzierung um einen Faktor von „nur" 1,85 beobachtbar, aber bei der doppelten Kavit{\"a}tsl{\"a}nge ist dieser Faktor schon auf 3,60 angestiegen. Im Rahmen dieser Arbeit wurden DFB-Laser hergestellt, die eine Linienbreite von bis zu 198 kHz aufwiesen. Dies stellt f{\"u}r lateral komplexgekoppelte Laser einen absoluten Rekordwert dar. Im Vergleich zu Index-DFB-Lasern ist dieser Wert bzgl. der Linienbreite mit den aktuellsten Ergebnissen aus der Forschung zu vergleichen [CTR+11], bei welchen eine Linienbreite zu 200 kHz bestimmt wurde. In dem letzten Abschnitt dieser Arbeit wurde der Einfluss einer ver{\"a}nderten Phasenlage von Gitter und Facette untersucht. Dabei wurden spezielle Bauteile hergestellt (3-Segment-DFB-Laser) und verschiedene Gitterl{\"a}ngen untersucht. Die Phasenlage kann reversibel {\"u}ber den eingestellten Strom in den gitterfreien Segmenten geregelt werden. Wie vorhergesagt, best{\"a}tigen die Experimente, dass diese Phasenbeziehung einen signifikanten Einfluss auf die Ausgangsleistung, die Wellenl{\"a}nge mit ihrer zugeh{\"o}rigen Seitenmodenunterdr{\"u}ckung und auch auf die Linien-breite hat. Bei der Analyse der Linienbreite konnte eindeutig beobachtet werden, dass f{\"u}r die verschiedenen L{\"a}ngen die inverse Linienbreite sehr gut mit der relativen Seitenmodenunterdr{\"u}ckung gekoppelt ist. Dies stellt eine deutliche Erleichterung der zuk{\"u}nftigen Optimierung der komplexgekoppelten DFB-Laser dar, da eine Linienbreitenuntersuchung meist deutlich zeitaufwendiger ist als eine Analyse mit einem optischen Spektrometer.}, subject = {DFB-Laser}, language = {de} }