@phdthesis{Genheimer2023, author = {Genheimer, Ulrich}, title = {The Photophysics of Small Organic Molecules for Novel Light Emitting Devices}, doi = {10.25972/OPUS-32031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320313}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This PhD thesis addresses the photophysics of selected small organic molecules with the purpose of using them for efficient and even novel light sources. In particular, the studies presented focused on revealing the underlying exciton dynamics and determining the transition rates between different molecular states. It was shown how the specific properties and mechanisms of light emission in fluorescent molecules, molecules with phosphorescence or thermally activated delayed fluorescence (TADF), biradicals, and multichromophores can be utilized to build novel light-emitting devices. The main tool employed here was the analysis of the emitters' photon statistics, i.e. the analysis of the temporal distribution of emitted photons, during electrical or optical excitation. In the introduction of this work, the working principle of an organic light-emitting diode (OLED) was introduced, while Chapter 2 provided the physical background of the relevant properties of organic molecules and their interaction with light. In particular, the occurrence of discrete energy levels in organic semiconductors and the process of spontaneous light emission were discussed. Furthermore, in this chapter a mathematical formalism was elaborated with the goal to find out what kind of information about the studied molecule can be obtained by analyzing its photon statistics. It was deduced that the intensity correlation function g (2)(t) contains information about the first two factorial moments of the photon statistics and that higher order factorial moments do not contain any additional information about the system under study if the system is always in the same state after the emission of a photon. To conclude the introductory part, Chapter 3 introduced the utilized characterization methods including confocal microscopy of single molecules, time correlated single photon counting and temperature dependent photoluminescence measurements. To provide the background necessary for an understanding of for the following result chapters, in Section 4.1 a closer look was taken at the phenomenon of blinking and photobleaching of individual molecules. For a squaraine-based fluorescent emitter rapid switching between a bright and dark state was observed during photoexcitation. Using literature transition rates between the molecular states, a consistent model was developed that is able to explain the distribution of the residence times of the molecule in the bright and dark states. In particular, an exponential and a power-law probability distribution was measured for the time the molecule resides in tis bright and dark state, respectively. This behavior as well as the change in photoluminescence intensity between the two states was conclusively explained by diffusion of residual oxygen within the sample, which had been prepared in a nitrogen-filled glovebox. For subsequent samples of this work, thin strips of atomic aluminum were deposited on the matrices to serve as oxygen getter material. This not only suppressed the efficiency of photobleaching, but also noticeably prolonged the time prior to photobleaching, which made many of the following investigations possible in the first place. For emitters used in displays, emission properties such as narrow-band luminescence and short fluorescence lifetimes are desired. These properties can be influenced not only by the emitter molecule itself, but also by the interaction with the chosen environment. Therefore, before focusing on the photophysics of individual small organic molecules, Section 4.2 highlighted the interaction of a perylene bisimide-based molecular species with its local environment in a disordered polymethyl methacrylate matrix. In a statistical approach, individual photophysical properties were measured for 32 single molecules and correlations in the variation of the properties were analyzed. This revealed how the local polarity of the molecules' environment influences their photophysics. In particular, it was shown how an increase in local polarity leads to a red-shifted emission, narrower emission lines, broader vibronic splitting between different emission lines in combination with a smaller Huang-Rhys parameter, and a longer fluorescence lifetime. In the future, these results may help to embed individual chromophores into larger macromolecules to provide the chromophore with the optimal local environment to exhibit the desired emission properties. The next two sections focused on a novel and promising class of chromophores, namely linear coordinated copper complexes, synthesized in the group of Dr. Andreas Steffen at the Institute of Inorganic Chemistry at the University of W{\"u}rzburg. In copper atoms, the d-orbitals are fully occupied, which prevents undesirable metal-centered d-d⋆ states, which tend to lie low in energy and recombine non-radiatively. Simultaneously, the copper atom provides a flexible coordination geometry, while complexes in their linear form are expected to exhibit the least amount of excited state distortions. Depending on the chosen ligands, these copper complexes can exhibit phosphorescence as well as temperature activated delayed fluorescence. In Section 4.3, a phosphorescent copper complex with a chlorine atom and a 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethyl-2-pyrrolidine-ylidene- ligand was tested for its suitability as an optically active material in an OLED. For this purpose, an OLED with a polyspirobifluorene-based copolymer matrix and the dopant at a concentration of 20 wt\% was electrically excited. Deconvolution of the emission spectrum in contributions from the matrix and the dopant revealed that 60 \% of the OLEDs emission was due to the copper complex. It was also shown that the shape of the emission spectrum of the copper complex remains unchanged upon incorporation into the OLED, but is red-shifted by about 233 meV. In Section 4.4, a second copper complex exhibiting thermally activated delayed fluorescence was analyzed. This complex comprised a carbazolate as well as a 2-(2,6- diisopropyl)-phenyl-1,1-diphenyl-isoindol-2-ium-3-ide ligand and was examined in the solid state and at the single-molecule level, where single photon emission was recorded up to an intensity of 78'000 counts per second. The evaluation of the second-order autocorrelation function of the emitted light proved an efficient transition between singlet and triplet excited states on the picosecond time scale. In the solid state, the temperature- dependent fluorescence decay of the complex was analyzed after pulsed photoexcitation in the temperature range between 300 K and 5 K. From these measurements, a small singlet-triplet energy gap of only 65 meV and a triplet sublevel splitting of 3.0 meV were derived. The transition rates between molecular states could also be determined. Here, the fast singlet decay time of τS1 = 9.8ns proved the efficient thermally activated delayed fluorescence process, which was demonstrated for the first time for this new class of copper(I) complexes thus. While the use of thermally activated delayed fluorescence is a potential way to harness otherwise long-living dark triplet states, radicals completely avoid dark triplet states. However, this usually comes with the huge drawback of the molecules being chemically unstable. Therefore, two chemically stable biradical species were synthesized in the framework of the DFG research training school GRK 2112 on Molecular biradicals: structure, properties and reactivity, by Yohei Hattori in the group of Prof. Dr. Christoph Lambert and Rodger Rausch in the group of Prof. Dr. Frank W{\"u}rthner at the Institute of Organic Chemistry at the University of W{\"u}rzburg, respectively. In Section 4.5, it was investigated how these molecules can be used in OLEDs. In the first isoindigo based biradical (6,6'-bis(3,5-di-tert-butyl-4-phenoxyl)-1,1'-bis(2- ethylhexyl)-[3,3'-biindolinyl-idene]-2,2'-dione) two tert-butyl moieties kinetically block chemical reactions at the place of the lone electrons and an electron-withdrawing core shifts the electron density into the center of the chromophore. With these properties, it was possible to realize a poly(p-phenylene vinylene) copolymer based OLED doped with the biradical and to observe luminescence during optical as well as electrical excitation. Analyzing shapes of the photo- and electroluminescence spectra at different doping concentrations, F{\"o}rster resonance energy transfer was determined to be the dominant transition mechanism for excitons from the matrix to the biradical dopants. Likewise, OLEDs could be realized with the second diphenylmethylpyridine based birad- ical (4-(5-(bis(2,4,6-trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)-N-(4-(5-(bis(2,4,6- -trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)phenyl)-N-(4-methoxyphenyl)aniline) as dopant. In this biradical, chlorinated diphenylmethyl groups protect the two unpaired electrons. Photo- and electroluminescence spectra showed an emission in the near in- frared spectral range between 750 nm and 1000 nm. Also, F{\"o}rster resonance energy trans- fer was the dominant energy transfer mechanism with an transfer efficiency close to 100 \% even at doping concentrations of only 5 wt\%. In addition to demonstrating the working OLEDs based in biradicals, the detection of luminescence of the two biradical species in devices also constitutes an important step toward making use of experimental techniques such as optically detected electron spin resonance, which could provide information about the electronic states of the emitter and their spin manifold during OLED operation. Another class of emitters studied are molecules in which several chromophores are co- valently linked to form a macrocyclic system. The properties of these multichromophores were highlighted in Section 4.6. Here, it was analyzed how the photophysical behavior of the molecules is affected by the covalent linking, which determines the interaction be- tween the chromophores. The first multichromophore, 2,2'-ditetracene, was synthesized by Lena Ross in the group of Prof. Dr. Anke Kr{\"u}ger at the Institute of Organic Chemistry at the University of W{\"u}rzburg and was analyzed in this work both at the single-molecule level and in its aggregated crystalline form. While the single crystals were purified and grown in a vertical sublimation oven, the samples for the single molecule studies were prepared in matrices of amorphous polymethyl methacrylate and crystalline anthracene. Tetracene was analyzed concurrently to evaluate the effects of covalent linking. In samples where the distance between two molecules is sufficiently large, tetracene and 2,2'-ditracene show matching emission profiles with the only difference in the Franck-Condon factors and a de- creased photoluminescence decay time constant from 14 ns for tetracene to 5 ns for 2,2'- ditracene, which can be attributed to the increased density of the vibrational modes in 2,2'-ditracene. Evaluation of the photon statistics of individual 2,2'-ditracene molecules however showed that the system does not behave as two individual chromophores but as a collective state, preserving the spectral properties of the two tetracene chromophores. Complementary calculations performed by Marian Deutsch in the group of Prof. Dr. Bernd Engels at the Institute of Physical and Theoretical Chemistry at the University of W{\"u}rzburg helped to understand the processes in the materials and could show that the electronic and vibronic modes of 2,2'-ditracene are superpositions of the modes occurring in tetracene. In contrast, single-crystalline 2,2'-ditetracene behaves significantly different than tetracene, namely exhibiting a red shift in photoluminescence of 150 meV, caused by an altered crys- talline packing that lowers the S1-state energy level. Temperature-dependent photolu- minescence measurements revealed a rich emission pattern from 2,2'-ditetracene single crystals. The mechanisms behind this were unraveled using photoluminescence lifetime density analysis in different spectral regions of the emission spectrum and at different tem- peratures. An excimer state was identified that is located about 5 meV below the S1-state, separated by a 1 meV barrier, and which can decay to the ground state with a time constant of 9 ns. Also, as the S1-state energy level is lowered below the E(S1) ≥ 2 ×E(T1) threshold, singlet fission is suppressed in 2,2'-ditetracene in contrast to tetracene. Therefore, at low temperatures, photoluminescence is enhanced by a factor of 46, which could make 2,2'- ditetracene a useful material for future applications in devices such as OLEDs or lasers. The second multichromophore species, para-xylylene bridged perylene bisimide macrocycles, were synthesized by Peter Spenst in the group of Prof. Dr. Frank W{\"u}rthner at the Institute of Organic Chemistry at the University of W{\"u}rzburg, by linking three and four perylene bisimides, respectively. To reveal the exciton dynamics in these macrocycles, highly diluted monomers as well as trimers and tetramers were doped into matrices of polymethyl methacrylate to create thin films in which individual macrocycles could be analyzed. The emission spectra of the macrocycles remained identical to those of the monomers, indicating weak coupling between the chromophores. Single photon emission could be verified for monomers as well as macrocycles, as exciton-exciton annihilation processes suppress the simultaneous emission of two photons from one macrocycle. Nevertheless, the proof of the occurrence of a doubly excited state was obtained by excitation power dependent photon statistics measurements. The formalism developed in the theory part of this thesis for calculating the photon statistics of multichromophore systems was used here to find a theoretical model that matches the experimental results. The main features of this model are a doubly excited state, fast singlet-singlet annihilation, and an efficient transition from the doubly excited state to a dark triplet state. The occurrence of triplet-triplet annihilation was demonstrated in a subsequent experiment in which the macrocycles were excited at a laser intensity well above the saturation intensity of the monomer species. In contrast to the monomers, the trimers and tetramers exhibited neither a complete dark state nor saturation of photoluminescence. Both processes, efficient singlet-singlet and triplet-triplet annihilation make perylene bisimide macrocycles exceptionally bright single photon emitters. These advantages were utilized to realize a room temperature electrically driven fluorescent single photon source. For this purpose, OLEDs were fabricated using polyvinylcarbazole and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol blends as a host material for perylene bisimide trimers. Photon antibunching could be observed in both optically and electrically driven devices, representing the first demonstration of electrically driven single photon sources using fluorescent emitters at room temperature. As expected from the previous optical experiments, the electroluminescence of the molecules was exceptionally bright, emitting about 105 photons per second, which could be seen even by eye under the microscope. Finally, in the last section 4.7 of this thesis, two additional measurement schemes were proposed as an alternative to the measurement of the second-order correlation function g (2)(t) of single molecules, which only provides information about the first two factorial moments of the molecules' photon statistics. In the first scheme, the g (3)(t) function was measured with three photodiodes, which is a consequential extension of the Hanbury Brown and Twiss measurement with two photodiodes. It was demonstrated how measuring the g (3)(t) function is able to identify interfering emitters with non-Poisson statistics in the experiment. The second setup was designed with an electro-optic modulator that repeatedly gen- erates photoexcitation in the form of a step function. The recording of luminescence transients for different excitation intensities yields the same results as the correspond- ing g (2)-functions measured on single emitters, both in their shape and in their depen- dence on excitation power. To demonstrate this concept, the TADF emitter TXO-TPA (2- [4-(diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one) was doped at a concen- tration of 10-4 wt\% in a mCP (1,3-Bis(N-carbazolyl)benzene) matrix. This concentration was low enough that TXO-TPA molecules did not interact with each other, but an ensem- ble of molecules was still present in the detection volume. The intramolecular transition rates between singlet and triplet states of TXO-TPA could be derived with an error of at most 5 \%. Other experimental techniques designed to obtain this information require ei- ther lengthy measurements on single molecules, where sample preparation is also often a challenge, or temperature-dependent fluorescence lifetime measurements, which require a cryostat, which in turn places constraints on the sample design used. In future, this ap- proach could establish a powerful method to study external factors influencing molecular transition rates. Overall, this thesis has introduced new molecular materials, revealed their photophys- ical properties, and demonstrated how they can be used to fabricate efficient and even novel light sources.}, subject = {Fotophysik}, language = {en} } @phdthesis{Ferger2023, author = {Ferger, Matthias}, title = {Development of New Methods for Triarylborane Synthesis and Investigation of Triarylborane Chromophores for DNA and RNA Sensing and Singlet Oxygen Sensitization}, doi = {10.25972/OPUS-23430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234307}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The 1st chapter provides a detailed review of the development of synthetic approaches to triarylboranes from their first report nearly 135 years ago to the present. In the 2nd chapter, a novel and convenient methodology is reported for the one-pot synthesis of sterically-congested triarylboranes, using bench-stable aryltrifluoroborates as the boron source. The new procedure gives access to symmetrically- and unsymmetrically-substituted triarylboranes. The borylated triarylboranes are suggested as building blocks for the design of functional materials. In the 3rd chapter, four luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nM range, are investigated. The molecular structures of two of the neutral precursors reveal some structural flexibility for these compounds in the solid state. The compounds were found to be highly emissive even in water and DNA and RNA binding affinities were found to be dependent on linker length and flexibility. Strong SERS responses for three of the four compounds demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. In chapter 4, the compound class of water-soluble tetracationic bis-triarylborane chromophores is extended by EDOT-linked compounds and those are compared to their thiophene-containing analogs. Absorption and emission are significantly red-shifted in these compounds, compared to their thiophene-containing analogs and, due to a large Stokes shift, one of the reported compounds exhibits the most bathochromically shifted emission, observable well into the near infrared region, of all tetracationic water-soluble bis-triarylborane chromophores reported to date. Long-lived excited states, completely quenched by oxygen, were observed for the water-stable compounds of this study via transient absorption spectroscopy and a quantum yield for singlet oxygen formation of 0.6 was determined for one of them.}, subject = {Triarylborane}, language = {en} } @phdthesis{Rauch2020, author = {Rauch, Florian}, title = {1,3-Bis(trifluoromethyl)benzene: A Versatile Building Block for the Synthesis of New Boron-Containing Conjugated Systems}, doi = {10.25972/OPUS-21147}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211478}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Chapter 1 Thermally activated delayed fluorescence (TADF) materials provide a strategy to improve external quantum efficiencies of organic light emitting diodes (OLEDs). Because of spin-statistics, 25\% singlet and 75\% triplet excitons are generated in an electronic device. Conventional organic emitters cannot harvest the triplet excitons, due to low spin orbit coupling, and exhibit low external quantum efficiencies. TADF materials have to be designed in such a way, that the energy gap between the lowest singlet and triplet states (ΔES-T) is sufficiently small to allow reverse intersystem crossing (rISC) in organic systems. An established structure property relationship for the generation of TADF materials is the spatial separation of HOMO and LUMO via an orthogonal arrangement of donor and acceptor in donor-π-acceptor (D-π-A) compounds. This is achieved by increasing the steric bulk of the π-bridge. However, this is not always the most efficient method and electronic parameters have to be considered. In a combined experimental and theoretical study, a computational protocol to predict the excited states in D-π-A compounds containing the B(FXyl)2 (FXyl = 2,6-bis(trifluoromethyl)phenyl) acceptor group for the design of new TADF emitters is presented. To this end, the effect of different donor and π-bridge moieties on the energy gaps between local and charge-transfer singlet and triplet states was examined. To prove the computationally aided design concept, the D-π-B(FXyl)2 compounds Cbz-π (1), Cbz-Meπ (2), Phox-Meπ (3), Phox-MeOπ (4), and MeO₃Ph-FMeπ (5) were synthesized and fully characterized. The photophysical properties of these compounds in various solvents, polymeric film and in a frozen matrix were investigated in detail and show excellent agreement with the computationally obtained data (Figure 5.1). A simple structure-property relationship based on the molecular fragment orbitals of the donor and the π-bridge which minimize the relevant singlet-triplet gaps to achieve efficient TADF emitters is presented.   Chapter 2 Three-coordinate boron is widely used as an acceptor in conjugated materials. In recent years the employment of trifluoromethylated aryls was shown to improve the acceptor properties of such boranes. Astonishingly, the use of ortho-trifluoromethylated aryls in boron containing systems also improves the stability of those systems in regard to their inherent reactivity towards nucleophiles. Borafluorenes are stronger acceptors than their non-annulated triarylborane derivatives. In previous studies, the effect of trifluoromethylated aryls as the exo-aryl moieties in borafluorenes, as well as the effect of fluorination on the backbone, were examined. As the latter suffers from a very low stability, systems using trifluoromethyl groups, both on the exo-aryl as well as the borafluorene backbone were designed in order to maximize both the stability as well as the acceptor strength. Three different perfluoroalkylated borafluorenes were prepared and their electronic and photophysical properties were investigated. The systems have four trifluoromethyl moieties on the borafluorene moiety as well as two trifluoromethyl groups at the ortho positions of their exo-aryl moieties. They differ with regard to the para-substituents on their exo-aryl moieties, being a proton (FXylFBf), a trifluoromethyl group (FMesFBf) or a dimethylamino group (p NMe2-FXylFBf), respectively. Furthermore, an acetonitrile adduct of FMesFBf was obtained and characterized. All derivatives exhibit extraordinarily low reduction potentials, comparable to those of perylenediimides. The most electron deficient derivative FMesFBf was also chemically reduced and its radical anion isolated and characterized. Furthermore, the photophysical properties of all compounds were investigated. All compounds exhibit weakly allowed lowest energy absorptions and very long fluorescent lifetimes of ca. 250 ns up to 1.6 μs; however, the underlying mechanisms differ. The donor substituted derivative p-NMe2-FXylFBf exhibits thermally activated delayed fluorescence from a charge transfer (CT) state, while the FMesFBf and FXylFBf borafluorenes exhibit only weakly allowed locally excited (LE) transitions due to their symmetry and low transition dipole moments, as suggested by DFT and TD-DFT calculations.   Chapter 3 Conjugated dendrimers find wide application in various fields, such as charge transport/storage or emitter materials in organic solar cells or OLEDs. Previous studies on boron containing conjugated dendrimers are scarce and mostly employ a convergent synthesis approach, lacking a simple, generally applicable synthetic access. A new divergent approach was designed and conjugated triarylborane dendrimers were synthesized up to the 2nd generation. The synthetic strategy consists of three steps: 1) functionalization, via iridium catalyzed C-H borylation; 2) activation, via fluorination of the generated boronate ester with K[HF2] or [N(nBu)4][HF2]; and 3) expansion, via reaction of the trifluoroborate salts with aryl Grignard reagents. The concept was also shown to be viable for a convergent approach. All but one of the conjugated borane dendrimers exhibit multiple, distinct and reversible reduction potentials, making them potentially interesting materials for applications in molecular accumulators (Figure 5.7). Based on their photophysical properties, the 1st generation dendrimers exhibit good conjugation over the whole system. The conjugation does not further increase upon expansion to the 2nd generation, but the molar extinction coefficients increase linearly with the number of triarylborane sub-units, suggesting a potential application as photonic antennas.   Chapter 4 A surprisingly high electronically-driven regioselectivity for the iridium-catalyzed C-H borylation using [Ir(COD)OMe]2 (COD = 1,5-cyclooctadiene) as the precatalytic species, bis(pinacolato)diboron (B2pin2) as the boron source and 4,4'-ditertbutyl-2,2'-bipyridin (dtbpy) as the ligand of D-π-A systems with diphenylamino (1) or carbazolyl (2) moieties as the donor, bis(2,6-bis(trifluoromethyl)phenyl)boryl (B(FXyl)2) as the acceptor, and 1,4-phenylene as the π-bridge was observed. Under these conditions, borylation was observed only at the sterically least encumbered para-positions of the acceptor groups. As boronate esters are versatile building blocks for organic synthesis (C-C coupling, functional group transformations), the C-H borylation represents a simple potential method for post-functionalization by which electronic or other properties of D-π-A systems can be fine-tuned for specific applications. The photophysical and electrochemical properties of the borylated (1-(Bpin)2) and unborylated (1) diphenylamino-substituted D-π-A systems were investigated. Interestingly, the borylated derivative exhibits coordination of THF to the boronate ester moieties, influencing the photophysical properties and exemplifying the non-innocence of boronate esters.}, subject = {Triarylborane}, language = {en} } @phdthesis{Lindner2019, author = {Lindner, Joachim Oliver}, title = {Multistate Metadynamics with Electronic Collective Variables}, doi = {10.25972/OPUS-19163}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191638}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The aim of this thesis was to develop new automatic enhanced sampling methods by extending the idea of Parrinello's metadynamics to multistate problems and by introducing new quantum-mechanical electronic collective variables. These methods open up a rich perspective for applications to the photophysical processes in complex molecular systems, which play a major role in many natural processes such as vision and photosynthesis, but also in the development of new materials for organic electronics, whose function depends on specific electronic properties such as biradicalicity.}, subject = {Theoretische Chemie}, language = {en} } @phdthesis{NitschgebLube2017, author = {Nitsch [geb. Lube], J{\"o}rn S.}, title = {Struktur, Reaktivit{\"a}t und Photophysik von Kupfer(I)-Komplexen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123787}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In der Arbeit wurden die Strukturen, Reaktivit{\"a}ten und die Photophysik von verschiedenen Kupfer(I)-Komplexen untersucht. Dazu wurden zun{\"a}chst Kupfer(I)-Halogenid und -Pseudohalogenid Verbindungen der Typen [CuX] und [Cu2I2] mit Phenanthrolin und dessen Derivaten sowohl strukturell als auch photophysikalisch detailliert charakterisiert. Diese Verbindungen weisen eine breite XMLCT-Absorption zwischen 450-600 nm und Emissionsbanden zwischen 550-850 nm im Festk{\"o}rper auf. Es zeigte sich f{\"u}r diese strukturell einfachen Verbindungen ein komplexes und sehr unterschiedliches photophysikalisches Verhalten. Dabei wurde neben strukturellen Parametern, wie z.B. π-Wechselwirkungen, auch der Einfluss des Halogen bzw. Pseudohalogenatoms untersucht. Es konnte gezeigt werden, dass mindestens zwei angeregte Zust{\"a}nde an der Emission von [CuI(dtbphen)] (16) und [CuBr(dtbphen)] (17) im Feststoff beteiligt sind und es wurden m{\"o}gliche Mechanismen wie TADF und die Beteiligung von zwei Triplett Zust{\"a}nden diskutiert. Die Glasmatrixmessungen von 17 in 2-Methyltetrahydrofuran wie auch die temperaturabh{\"a}ngigen Messungen von [Cu2(µ2-I)2(dmphen)2] (21) zeigen im Gegensatz dazu keinen Hinweis auf TADF. In der Summe zeichnet sich ein komplexes photophysikalisches Bild dieser Komplexe, in der neben molekularen Parametern auch Festk{\"o}rpereffekte eine wichtige Rolle spielen und die eine einfache Zuordnung zu einem bestimmten Mechanismus schwierig machen. Neuartige Verbindungen mit einem Cuban-Strukturmotiv [L4Cu4X4] (X = Br (32) und Cl (33)), die von einem Phosphininliganden (L = 2,4-Diphenyl-5-methyl-6-(2,3-dimethylphenyl)-phosphinin, 31) koordiniert sind, wurden in einer weiteren Studie photophysikalisch untersucht. Im Gegensatz zu anderen Schweratomkomplexen des Phosphinins, wie z.B. [Ir(C^P)3] (mit C^P = cyclometalliertes 2,4,6-Triphenylphosphinin) zeigen die Cu(I)-Verbindungen bereits bei Raumtemperatur eine intensive Phosphoreszenz. Die LE-Emission kann auf der Grundlage von DFT-Rechnungen einem 3XMLCT Zustand zugeordnet werden. Im Kontrast zu strukturanalogen Pyridin Komplexen ist kein clusterzentrierter 3CC {\"U}bergang festzustellen, sondern eine schwache HE-Emissionsbande ist mit großer Wahrscheinlichkeit der Restfluoreszenz des Phosphininliganden 31 geschuldet. Eine weitere Ligandenmodifikation wurde mit der Einf{\"u}hrung von NHCs als starke σ-Donor Liganden erreicht. Einerseits wurde die Photophysik von [Cu2Cl2(NHC^Pic)2]-Systemen (mit NHC^Pic = N-Aryl-N'-(2-picolyl) imidazolin 2 yliden) untersucht, die einen Hybridliganden mit Picolyl- und NHC Funktionalit{\"a}t beinhalten. Es konnte gezeigt werden, dass diese Verkn{\"u}pfung eines starken σ-Donoren und eines π*-Akzeptors zu hohen Quantenausbeuten von bis zu 70\% f{\"u}hren kann, wenn zus{\"a}tzlich auch dispersive Cu-Cu-Wechselwirkungen vorhanden sind. Die Effizienz der Emission kann sich bei Anwesenheit dieser dispersiven Interaktionen im Gegensatz zu Systemen ohne kurze Cu-Cu-Abst{\"a}nde um den Faktor zwei erh{\"o}hen. Dinukleare Strukturen von Typ [Cu2Cl2(IMesPicR)2] wurden f{\"u}r die Komplexe 41-44 gefunden, die einen Donor-Substituenten in der para-Position der Picolyl-Funktionalit{\"a}t tragen. F{\"u}r eine Nitro-Gruppe in der 4-Postion konnte der mononukleare Komplex [CuCl(IMesPicR)] (45) isoliert werden. Ferner k{\"o}nnen die Substituenten am NHC ebenfalls die Strukturen im Festk{\"o}rper beeinflussen. So kann f{\"u}r 46 eine polymere Struktur [CuCl(IDippPic)]∞ festgestellt werden. Die Emission in diesen Systemen ist mit einer Elektronenumverteilung aus der Pyridin- und Carbenfunktionalit{\"a}t in das Kupfer- bzw. Chloridatom (LMXCT-{\"U}bergang) verbunden. Dabei zeigen die Komplexe [Cu2Cl2(IMesPicH)2] (41), [Cu2Cl2(IMesPicMe)2] (42) und [Cu2Cl2(IMesPicCl)2] (43) zus{\"a}tzlich Anzeichen von TADF. Zum anderem sind NHC Liganden und dispersive Cu-Cu-Wechselwirkungen Gegenstand einer weiteren strukturellen und photophysikalischen Studie. In dieser wurden die Cu-Cu-Abst{\"a}nde in dinuklearen Kupfer(I)-Bis-NHC-Komplexen [Cu2(tBuIm2(R^R))2](PF6)2 (50-52) durch die Einf{\"u}hrung von Methylen, Ethylen und Propylenbr{\"u}ckeneinheiten systematisch variiert. Die erhaltenen Komplexe wurden strukturell und photophysikalisch mit einem mononuklearen Komplex [Cu(tBu2Im)2](PF6) (53) verglichen. Dadurch konnte der Einfluss von kurzen Cu-Cu-Abst{\"a}nden auf die Emissionseigenschaften gezeigt werden, auch wenn der genaue Ursprung einer ebenfalls beobachteten Mechanochromie noch nicht g{\"a}nzlich aufgekl{\"a}rt ist. M{\"o}glich ist die Existenz verschiedener Konformere in den Pulverproben (Polymorphie), die das Entstehen niederenergetischer Banden in der zerriebenen, amorphen Pulverprobe von [Cu2(tBuIm2(C3H6))2](PF6)2 (52), aber auch die duale Emissionen von [Cu2(tBuIm2(CH2))2](PF6)2 (50) und [Cu2(tBuIm2(C2H4))2](PF6)2 (51) erkl{\"a}ren k{\"o}nnten. Die hochenergetische Bande kann f{\"u}r alle Komplexe aufgrund von DFT-und TD-DFT-Rechnungen, 3LMCT Zust{\"a}nden zugeordnet werden, w{\"a}hrend niederenergetische Emissionsbanden immer dann zu erwarten sind, wenn 3MC-Zust{\"a}nde populiert werden k{\"o}nnen, bzw. wenn dispersive Cu-Cu-Wechselwirkungen m{\"o}glich sind. Der letzte Beweis steht jedoch mit der Isolation anderer polymorpher Phasen und derer photophysikalischen Charakterisierung noch aus. Im letzten Teil dieser Arbeit wurde gezeigt, wie die Deformations und Interaktionsenergie das Koordinationsverhalten und die Reaktivit{\"a}t von d10 [M(NHC)n]-Komplexen beeinflussen k{\"o}nnen. Hierzu wurden die Bildung von d10-[M(NHC)n]-Komplexen (n = 1-4; mit M = Co-, Rh-, Ir-, Ni, Pd, Pt, Cu+, Ag+, Au+, Zn2+, Cd2+ and Hg2+) in der Gasphase und in polarer L{\"o}sung (DMSO) auf DFT-D3(BJ)-ZORA-BLYP/TZ2P-Niveau berechnet und die Bindungssituation der Metall-Carben-Bindung analysiert. Dabei zeigt sich, dass dikoordinierte Komplexe [M(NHC)2] f{\"u}r alle d10-Metalle thermodynamisch stabile Spezies darstellen, jedoch jede weitere h{\"o}here Koordination stark vom Metall bzw. von der Deformationsenergie abh{\"a}ngen. Hier konnte auf Grundlage einer quantitativen Kohn Sham-Molek{\"u}lorbitalbetrachtung die Ursache f{\"u}r die unterschiedlich hohen Werte der Deformationsenergie (ΔEdef) in den NHC‒M‒NHC-Fragmenten aufgekl{\"a}rt werden. Hohe Werte sind auf ein effektives sd-Mischen bzw. auf das σ-Bindungsger{\"u}sts zur{\"u}ckzuf{\"u}hren, w{\"a}hrend niedrige bzw. negative Werte von ΔEdef mit einem signifikanten π-R{\"u}ckbindungsanteil assoziiert sind. Zudem ist ein hoher elektrostatischer Anteil in der Interaktionsenergie ein wichtiger Faktor. So k{\"o}nnen trotz hoher berechneter Werte f{\"u}r die Deformationsenergien der Gruppe 12 (Zn(II), Cd(II) und Hg(II)), tetrakoordinierte Komplexe der Form [M(NHC)4] hohe thermodynamische Stabilit{\"a}t aufweisen. Diese allgemeinen Beobachtungen sollten nicht auf den NHC-Liganden beschr{\"a}nkt sein, und sind deswegen f{\"u}r Synthesen und Katalysezyklen von Bedeutung, in denen d10-MLn (n = 1-4) Komplexe Anwendung finden.}, subject = {Kupferkomplexe}, language = {de} } @phdthesis{Spaeth2015, author = {Sp{\"a}th, Florian Leonhard}, title = {Pr{\"a}paration und Charakterisierung einwandiger Kohlenstoffnanorohr-Polyfluoren-Komplexe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123874}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Im Fokus dieser Arbeit standen (6,5)-SWNT-PFO-BPy-Komplexe als Vertreter f{\"u}r polyfluorenstabilisierte, einwandige Kohlenstoffnanor{\"o}hren. In einem ersten Projekt wurden pr{\"a}parative Verfahren zur Dispergierung und Abscheidung dieser Proben weiterentwickelt. Es ist gelungen, die Ansatzgr{\"o}ße von 15 mL auf 200 mL hochzuskalieren sowie d{\"u}nne SWNT-Filme {\"u}ber Rotationsbeschichtung herzustellen. Des Weiteren wurde die lichtinduzierte Dynamik in halbleitenden SWNTs von der ps- bis zur µs-Zeitskala untersucht. Hier wurde ein umfassendes Bild zur Singulett- und Triplett-Exzitonendynamik in halbleitenden Kohlenstoffnanor{\"o}hren gezeichnet, welches maßgeblich durch diffusionslimitierte Prozesse gepr{\"a}gt ist. Abschließend wurde eine Methode vorgestellt, mit der sich Informationen zur Struktur von SWNT-Polymer-Komplexen und anderen supramolekularen Systemen gewinnen lassen. Diese basiert auf der Kombination von polarisationswinkelaufgel{\"o}ster Absorptionsspektroskopie an anisotropen Proben und globaler Datenanalyse.}, subject = {Kohlenstoff-Nanor{\"o}hre}, language = {de} }