@article{IsaiasBrumbergPozzietal.2020, author = {Isaias, Ioannis U. and Brumberg, Joachim and Pozzi, Nicol{\´o} G. and Palmisano, Chiara and Canessa, Andrea and Marotta, Giogio and Volkmann, Jens and Pezzoli, Gianni}, title = {Brain metabolic alterations herald falls in patients with Parkinson's disease}, series = {Annals of Clinical and Translational Neurology}, volume = {7}, journal = {Annals of Clinical and Translational Neurology}, number = {4}, doi = {10.1002/acn3.51013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235982}, pages = {579-583}, year = {2020}, abstract = {Pathophysiological understanding of gait and balance disorders in Parkinson's disease is insufficient and late recognition of fall risk limits efficacious followup to prevent or delay falls. We show a distinctive reduction of glucose metabolism in the left posterior parietal cortex, with increased metabolic activity in the cerebellum, in parkinsonian patients 6-8 months before their first fall episode. Falls in Parkinson's disease may arise from altered cortical processing of body spatial orientation, possibly predicted by abnormal cortical metabolism.}, language = {en} } @article{BrumbergSchroeterBlazhenetsetal.2020, author = {Brumberg, Joachim and Schr{\"o}ter, Nils and Blazhenets, Ganna and Frings, Lars and Volkmann, Jens and Lapa, Constantin and Jost, Wolfgang H. and Isaias, Ioannis U. and Meyer, Philipp T.}, title = {Differential diagnosis of parkinsonism: a head-to-head comparison of FDG PET and MIBG scintigraphy}, series = {NPJ Parkinsons Disease}, volume = {6}, journal = {NPJ Parkinsons Disease}, doi = {10.1038/s41531-020-00141-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230675}, year = {2020}, abstract = {[\(^{18}\)F]fluorodeoxyglucose (FDG) PET and [\(^{123}\)I]metaiodobenzylguanidine (MIBG) scintigraphy may contribute to the differential diagnosis of neurodegenerative parkinsonism. To identify the superior method, we retrospectively evaluated 54 patients with suspected neurodegenerative parkinsonism, who were referred for FDG PET and MIBG scintigraphy. Two investigators visually assessed FDG PET scans using an ordinal 6-step score for disease-specific patterns of Lewy body diseases (LBD) or atypical parkinsonism (APS) and assigned the latter to the subgroups multiple system atrophy (MSA), progressive supranuclear palsy (PSP), or corticobasal syndrome. Regions-of-interest analysis on anterior planar MIBG images served to calculate the heart-to-mediastinum ratio. Movement disorder specialists blinded to imaging results established clinical follow-up diagnosis by means of guideline-derived case vignettes. Clinical follow-up (1.7 +/- 2.3 years) revealed the following diagnoses: n = 19 LBD (n = 17 Parkinson's disease [PD], n = 1 PD dementia, and n = 1 dementia with Lewy bodies), n = 31 APS (n = 28 MSA, n = 3 PSP), n = 3 non-neurodegenerative parkinsonism; n = 1 patient could not be diagnosed and was excluded. Receiver operating characteristic analyses for discriminating LBD vs. non-LBD revealed a larger area under the curve for FDG PET than for MIBG scintigraphy at statistical trend level for consensus rating (0.82 vs. 0.69, p = 0.06; significant for investigator \#1: 0.83 vs. 0.69, p = 0.04). The analysis of PD vs. MSA showed a similar difference (0.82 vs. 0.69, p = 0.11; rater \#1: 0.83 vs. 0.69, p = 0.07). Albeit the notable differences in diagnostic performance did not attain statistical significance, the authors consider this finding clinically relevant and suggest that FDG PET, which also allows for subgrouping of APS, should be preferred.}, language = {en} } @article{PalmisanoBrandtVissanietal.2020, author = {Palmisano, Chiara and Brandt, Gregor and Vissani, Matteo and Pozzi, Nicol{\´o} G. and Canessa, Andrea and Brumberg, Joachim and Marotta, Giorgio and Volkmann, Jens and Mazzoni, Alberto and Pezzoli, Gianni and Frigo, Carlo A. and Isaias, Ioannis U.}, title = {Gait Initiation in Parkinson's Disease: Impact of Dopamine Depletion and Initial Stance Condition}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {8}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2020.00137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200801}, year = {2020}, abstract = {Postural instability, in particular at gait initiation (GI), and resulting falls are a major determinant of poor quality of life in subjects with Parkinson's disease (PD). Still, the contribution of the basal ganglia and dopamine on the feedforward postural control associated with this motor task is poorly known. In addition, the influence of anthropometric measures (AM) and initial stance condition on GI has never been consistently assessed. The biomechanical resultants of anticipatory postural adjustments contributing to GI [imbalance (IMB), unloading (UNL), and stepping phase) were studied in 26 unmedicated subjects with idiopathic PD and in 27 healthy subjects. A subset of 13 patients was analyzed under standardized medication conditions and the striatal dopaminergic innervation was studied in 22 patients using FP-CIT and SPECT. People with PD showed a significant reduction in center of pressure (CoP) displacement and velocity during the IMB phase, reduced first step length and velocity, and decreased velocity and acceleration of the center of mass (CoM) at toe off of the stance foot. All these measurements correlated with the dopaminergic innervation of the putamen and substantially improved with levodopa. These results were not influenced by anthropometric parameters or by the initial stance condition. In contrast, most of the measurements of the UNL phase were influenced by the foot placement and did not correlate with putaminal dopaminergic innervation. Our results suggest a significant role of dopamine and the putamen particularly in the elaboration of the IMB phase of anticipatory postural adjustments and in the execution of the first step. The basal ganglia circuitry may contribute to defining the optimal referent body configuration for a proper initiation of gait and possibly gait adaptation to the environment.}, language = {en} }