@article{MukhopadhyaySchleierWirsingetal.2020, author = {Mukhopadhyay, Deb Pratim and Schleier, Domenik and Wirsing, Sara and Ramler, Jaqueline and Kaiser, Dustin and Reusch, Engelbert and Hemberger, Patrick and Preitschopf, Tobias and Krummenacher, Ivo and Engels, Bernd and Fischer, Ingo and Lichtenberg, Crispin}, title = {Methylbismuth: an organometallic bismuthinidene biradical}, series = {Chemical Science}, volume = {11}, journal = {Chemical Science}, number = {29}, doi = {10.1039/D0SC02410D}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251657}, pages = {7562-7568}, year = {2020}, abstract = {We report the generation, spectroscopic characterization, and computational analysis of the first free (non-stabilized) organometallic bismuthinidene, BiMe. The title compound was generated in situ from BiMe\(_3\) by controlled homolytic Bi-C bond cleavage in the gas phase. Its electronic structure was characterized by a combination of photoion mass-selected threshold photoelectron spectroscopy and DFT as well as multi-reference computations. A triplet ground state was identified and an ionization energy (IE) of 7.88 eV was experimentally determined. Methyl abstraction from BiMe\(_3\) to give [BiMe(_2\)]• is a key step in the generation of BiMe. We reaveal a bond dissociation energy of 210 ± 7 kJ mol\(^{-1}\), which is substantially higher than the previously accepted value. Nevertheless, the homolytic cleavage of Me-BiMe\(_2\) bonds could be achieved at moderate temperatures (60-120 °C) in the condensed phase, suggesting that [BiMe\(_2\)]• and BiMe are accessible as reactive intermediates under these conditions.}, subject = {Photoelektronenspektroskopie}, language = {en} } @article{RamlerKrummenacherLichtenberg2020, author = {Ramler, Jacqueline and Krummenacher, Ivo and Lichtenberg, Crispin}, title = {Well-Defined, Molecular Bismuth Compounds: Catalysts in Photochemically Induced Radical Dehydrocoupling Reactions}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {64}, doi = {10.1002/chem.202002219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224577}, pages = {14551 -- 14555}, year = {2020}, abstract = {A series of diorgano(bismuth)chalcogenides, [Bi(di-aryl)EPh], has been synthesised and fully characterised (E=S, Se, Te). These molecular bismuth complexes have been exploited in homogeneous photochemically-induced radical catalysis, using the coupling of silanes with TEMPO as a model reaction (TEMPO=(tetramethyl-piperidin-1-yl)-oxyl). Their catalytic properties are complementary or superior to those of known catalysts for these coupling reactions. Catalytically competent intermediates of the reaction have been identified. Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single-crystal X-ray diffraction analysis, and (TD)-DFT calculations.}, language = {en} } @article{RamlerLichtenberg2020, author = {Ramler, Jacqueline and Lichtenberg, Crispin}, title = {Molecular Bismuth Cations: Assessment of Soft Lewis Acidity}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {45}, doi = {10.1002/chem.202001674}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225808}, pages = {10250 -- 10258}, year = {2020}, abstract = {Three-coordinate cationic bismuth compounds [Bi(diaryl)(EPMe\(_{3}\))][SbF\(_{6}\)] have been isolated and fully characterized (diaryl=[(C\(_{6}\)H\(_{4}\))\(_{2}\)C\(_{2}\)H\(_{1}\)]\(^{2-}\), E=S, Se). They represent rare examples of molecular complexes with Bi⋅⋅⋅EPR\(_{3}\) interactions (R=monoanionic substituent). The \(^{31}\)P NMR chemical shift of EPMe3 has been found to be sensitive to the formation of LA⋅⋅⋅EPMe\(_{3}\) Lewis acid/base interactions (LA=Lewis acid). This corresponds to a modification of the Gutmann-Beckett method and reveals information about the hardness/softness of the Lewis acid under investigation. A series of organobismuth compounds, bismuth halides, and cationic bismuth species have been investigated with this approach and compared to traditional group 13 and cationic group 14 Lewis acids. Especially cationic bismuth species have been shown to be potent soft Lewis acids that may prefer Lewis pair formation with a soft (S/Se-based) rather than a hard (O/N-based) donor. Analytical techniques applied in this work include (heteronuclear) NMR spectroscopy, single-crystal X-ray diffraction analysis, and DFT calculations.}, language = {en} } @article{Lichtenberg2020, author = {Lichtenberg, Crispin}, title = {Main-Group Metal Complexes in Selective Bond Formations Through Radical Pathways}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {44}, doi = {10.1002/chem.202000194}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214758}, pages = {9674 -- 9687}, year = {2020}, abstract = {Recent years have witnessed remarkable advances in radical reactions involving main-group metal complexes. This includes the isolation and detailed characterization of main-group metal radical compounds, but also the generation of highly reactive persistent or transient radical species. A rich arsenal of methods has been established that allows control over and exploitation of their unusual reactivity patterns. Thus, main-group metal compounds have entered the field of selective bond formations in controlled radical reactions. Transformations that used to be the domain of late transition-metal compounds have been realized, and unusual selectivities, high activities, as well as remarkable functional-group tolerances have been reported. Recent findings demonstrate the potential of main-group metal compounds to become standard tools of synthetic chemistry, catalysis, and materials science, when operating through radical pathways.}, language = {en} } @article{HanftLichtenberg2020, author = {Hanft, Anna and Lichtenberg, Crispin}, title = {Dimerization of 2-[(2-((2-aminophenyl)thio)phenyl)amino]-cyclohepta-2,4,6-trien-1-one through hydrogen bonding, C\(_{19}\)H\(_{16}\)N\(_2\)OS}, series = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, volume = {235}, journal = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, number = {4}, doi = {10.1515/ncrs-2020-0124}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229482}, pages = {963-966}, year = {2020}, abstract = {C\(_{19}\)H\(_{16}\)N\(_2\)OS, triclinic, P (1) over bar (no. 2), a= 8.1510(3) angstrom, b = 8.8021(3) angstrom, c =11.3953(5) angstrom, alpha =72.546(2)degrees, beta=84.568(2)degrees, gamma =80.760(2)degrees, V =768.86(5) angstrom(3), Z =2, R\(_{gt}\)(F) = 0.0491, WR\(_{ref}\)(F-2) = 0.1494, T =100 K.}, language = {en} }