@article{ZhouSteinhardtDuelletal.2020, author = {Zhou, Xiang and Steinhardt, Maximilian Johannes and D{\"u}ll, Johannes and Krummenast, Franziska and Danhof, Sophia and Meckel, Katharina and Nickel, Katharina and Grathwohl, Denise and Leicht, Hans-Benno and Rosenwald, Andreas and Einsele, Hermann and Rasche, Leo and Kort{\"u}m, Martin}, title = {Obinutuzumab and venetoclax induced complete remission in a patient with ibrutinib-resistant non-nodal leukemic mantle cell lymphoma}, series = {European Journal of Haematology}, volume = {104}, journal = {European Journal of Haematology}, number = {4}, doi = {10.1111/ejh.13382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215513}, pages = {352 -- 355}, year = {2020}, abstract = {We herein report the case of a 73-year-old male patient who was diagnosed with leukemic non-nodal MCL. This patient had received six cycles of bendamustine, which resulted in a transient remission, and a second-line therapy with ibrutinib, which unfortunately failed to induce remission. We started a treatment with single-agent obinutuzumab at a dose of 20 mg on day 1, 50 mg on day 2-4, 330 mg on day 5, and 1000 mg on day 6. The laboratory analysis showed a rapid decrease of leukocyte count. Four weeks later, we repeated the treatment with obinutuzumab at a dose of 1000 mg q4w and started a therapy with venetoclax at a dose of 400 mg qd, which could be increased to 800 mg qd from the third cycle. This combination therapy was well tolerated. The patient achieved a complete remission (CR) after three cycles of obinutuzumab and venetoclax. To date, the patient has a progression-free survival of 17 months under ongoing obinutuzumab maintenance q4w. This is the first report about obinutuzumab and venetoclax induced CR in rituximab-intolerant patient with an ibrutinib-resistant MCL. This case suggests that obinutuzumab- and venetoclax-based combination therapy might be salvage therapy in patients with ibrutinib-resistant MCL.}, language = {en} } @article{WallstabeBussemerGroeberBeckeretal.2020, author = {Wallstabe, Julia and Bussemer, Lydia and Groeber-Becker, Florian and Freund, Lukas and Alb, Mirian and Dragan, Mariola and Waaga-Gasser, Ana Maria and Jakubietz, Rafael and Kneitz, Hermann and Rosenwald, Andreas and Rebhan, Silke and Walles, Heike and Mielke, Stephan}, title = {Inflammation-Induced Tissue Damage Mimicking GvHD in Human Skin Models as Test Platform for Immunotherapeutics}, series = {ALTEX}, volume = {37}, journal = {ALTEX}, number = {3}, doi = {10.14573/altex.1907181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229974}, pages = {429-440}, year = {2020}, abstract = {Due to the rapidly increasing development and use of cellular products, there is a rising demand for non-animal-based test platforms to predict, study and treat undesired immunity. Here, we generated human organotypic skin models from human biopsies by isolating and expanding keratinocytes, fibroblasts and microvascular endothelial cells and seeding these components on a collagen matrix or a biological vascularized scaffold matrix in a bioreactor. We then were able to induce inflammation-mediated tissue damage by adding pre-stimulated, mismatched allogeneic lymphocytes and/or inflammatory cytokine-containing supernatants histomorphologically mimicking severe graft versus host disease (GvHD) of the skin. This could be prevented by the addition of immunosuppressants to the models. Consequently, these models harbor a promising potential to serve as a test platform for the prediction, prevention and treatment of GvHD. They also allow functional studies of immune effectors and suppressors including but not limited to allodepleted lymphocytes, gamma-delta T cells, regulatory T cells and mesenchymal stromal cells, which would otherwise be limited to animal models. Thus, the current test platform, developed with the limitation that no professional antigen presenting cells are in place, could greatly reduce animal testing for investigation of novel immune therapies.}, language = {en} } @article{WeissbachHerediaGuerreroBarnsteineretal.2020, author = {Weißbach, Susann and Heredia-Guerrero, Sofia Catalina and Barnsteiner, Stefanie and Großhans, Lukas and Bodem, Jochen and Starz, Hanna and Langer, Christian and Appenzeller, Silke and Knop, Stefan and Steinbrunn, Torsten and Rost, Simone and Einsele, Hermann and Bargou, Ralf Christian and Rosenwald, Andreas and St{\"u}hmer, Thorsten and Leich, Ellen}, title = {Exon-4 Mutations in KRAS Affect MEK/ERK and PI3K/AKT Signaling in Human Multiple Myeloma Cell Lines}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {2}, issn = {2072-6694}, doi = {10.3390/cancers12020455}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200617}, year = {2020}, abstract = {Approximately 20\% of multiple myeloma (MM) cases harbor a point mutation in KRAS. However, there is still no final consent on whether KRAS-mutations are associated with disease outcome. Specifically, no data exist on whether KRAS-mutations have an impact on survival of MM patients at diagnosis in the era of novel agents. Direct blockade of KRAS for therapeutic purposes is mostly impossible, but recently a mutation-specific covalent inhibitor targeting KRAS\(^{p.G12C}\) entered into clinical trials. However, other KRAS hotspot-mutations exist in MM patients, including the less common exon-4 mutations. For the current study, the coding regions of KRAS were deep-sequenced in 80 newly diagnosed MM patients, uniformely treated with three cycles of bortezomib plus dexamethasone and cyclophosphamide (VCD)-induction, followed by high-dose chemotherapy and autologous stem cell transplantation. Moreover, the functional impact of KRAS\(^{p.G12A}\) and the exon-4 mutations p.A146T and p.A146V on different survival pathways was investigated. Specifically, KRAS\(^{WT}\), KRAS\(^{p.G12A}\), KRAS\(^{p.A146T}\), and KRAS\(^{p.A146V}\) were overexpressed in HEK293 cells and the KRAS\(^{WT}\) MM cell lines JJN3 and OPM2 using lentiviral transduction and the Sleeping Beauty vector system. Even though KRAS-mutations were not correlated with survival, all KRAS-mutants were found capable of potentially activating MEK/ERK- and sustaining PI3K/AKT-signaling in MM cells.}, language = {en} } @article{BellLenhartRosenwaldetal.2020, author = {Bell, Luisa and Lenhart, Alexander and Rosenwald, Andreas and Monoranu, Camelia M. and Berberich-Siebelt, Friederike}, title = {Lymphoid aggregates in the CNS of progressive multiple sclerosis patients lack regulatory T cells}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {3090}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.03090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198130}, year = {2020}, abstract = {In gray matter pathology of multiple sclerosis, neurodegeneration associates with a high degree of meningeal inflammatory activity. Importantly, ectopic lymphoid follicles (eLFs) were identified at the inflamed meninges of patients with progressive multiple sclerosis. Besides T lymphocytes, they comprise B cells and might elicit germinal center (GC)-like reactions. GC reactions are controlled by FOXP3+ T-follicular regulatory cells (TFR), but it is unknown if they participate in autoantibody production in eLFs. Receiving human post-mortem material, gathered from autopsies of progressive multiple sclerosis patients, indeed, distinct inflammatory infiltrates enriched with B cells could be detected in perivascular areas and deep sulci. CD35+ cells, parafollicular CD138+ plasma cells, and abundant expression of the homing receptor for GCs, CXCR5, on lymphocytes defined some of them as eLFs. However, they resembled GCs only in varying extent, as T cells did not express PD-1, only few cells were positive for the key transcriptional regulator BCL-6 and ongoing proliferation, whereas a substantial number of T cells expressed high NFATc1 like GC-follicular T cells. Then again, predominant cytoplasmic NFATc1 and an enrichment with CD3+CD27+ memory and CD4+CD69+ tissue-resident cells implied a chronic state, very much in line with PD-1 and BCL-6 downregulation. Intriguingly, FOXP3+ cells were almost absent in the whole brain sections and CD3+FOXP3+ TFRs were never found in the lymphoid aggregates. This also points to less controlled humoral immune responses in those lymphoid aggregates possibly enabling the occurrence of CNS-specific autoantibodies in multiple sclerosis patients.}, language = {en} }