@article{HoppeSchairerSebald1980, author = {Hoppe, J. and Schairer, H. U. and Sebald, Walter}, title = {The proteolipid of a mutant ATPase from Escherichia coli defective in H\(^+\)-conduction contains a glycine instead of the carbodiimide-reactive aspartyl residue}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62769}, year = {1980}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{HoppeSchairerSebald1980, author = {Hoppe, J. and Schairer, HU and Sebald, Walter}, title = {Identification of amino-acid substitutions in the proteolipid subunit of the ATP synthase from dicyclohexylcarbodiimide-resistant mutants of Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47374}, year = {1980}, abstract = {The amino acid sequence of the proteolipid subunit of the A TP synthase was analyzed in six mutant strains from Escherichia coli K 12, selected for their increased resistance towards the inhibitor N,N'-dicyclohexylcarbodiimide. All six inhibitor-resistant mutants were found to be altered at the same position of the proteolipid, namely at the isoleucine at residue 28. Two substitutions could be identified. In type I this residue was substituted by a valine resulting in a moderate decrease in sensitivity to dicyclohexylcarbodiimide. Type II contained a threonine residue at this position. Here a strong resistance was observed. These two amino acid substitutions did not influence functional properties of the ATPase complex. ATPase as well as A TP-dependent proton-translocating activities of mutant membranes were indistinguishable from the wild type. At elevated concentrations, dicyclohexylcarbodiimide still bound specifically to the aspartic acid at residue 61 of the mutant proteolipid as in the wild type, and thereby inhibited the activity of the ATPase complex. It is suggested that the residue 28 substituted in the resistant mutants interacts with dicyclohexylcarbodiimide during the reactions leading to the covalent attachment of the inhibitor to the aspartic acid at residue 61. This could indicate that these two residues are in close vicinity and would thus provide a first hint on the functional conformation of the proteolipid. Its polypeptide chain would have to fold back to bring together these two residues separated by a segment of 32 residues.}, subject = {Biochemie}, language = {en} } @article{vonJagowSebald1980, author = {von Jagow, Gerhard and Sebald, Walter}, title = {b-Type cytochromes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47383}, year = {1980}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{HoppeSebald1980, author = {Hoppe, J. and Sebald, Walter}, title = {Amino acid sequence of the proteolipid subunit of the proton-translocating ATPase complex from the thermophilic bacterium PS-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62754}, year = {1980}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} }