@article{HarnischWeissSebald1985, author = {Harnisch, U. and Weiss, H. and Sebald, Walter}, title = {The primary structure of the iron-sulfur subunit of ubiquinol-cytochrome c reductase from Neurospora, determined by cDNA and gene sequencing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62631}, year = {1985}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{RoemischTropschugSebaldetal.1987, author = {R{\"o}misch, J. and Tropschug, M. and Sebald, Walter and Weiss, H.}, title = {The primary structure of cytochrome c\(_1\) from Neurospora crassa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62578}, year = {1987}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{ViebrockPerzSebald1982, author = {Viebrock, A. and Perz, A. and Sebald, Walter}, title = {The imported preprotein of the proteolipid subunit of the mitochondrial ATP synthase from Neurospora crassa. Molecular cloning and sequencing of the mRNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62742}, year = {1982}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{WeichSebaldSchaireretal.1986, author = {Weich, H. A. and Sebald, Walter and Schairer, H. U. and Hoppe, J.}, title = {The human osteosarcoma cell line U-2 OS expresses a 3.8 kilobase mRNA which codes for the sequence of the PDGF-B chain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62588}, year = {1986}, abstract = {A cDNA clone of about 2500 basepairswas prepared from the human osteosarcoma cellline U-2 OS by hybridizing with a v-sis probe. Sequence analysis showed that this cDNA contains the coding region for the PDGF-B chain. Here we report that the mitogen secreted by these osteosarcoma cells contains the PDGF-B chain and is probably a homodimer of two B-chains.}, subject = {Biochemie}, language = {en} } @article{SebaldGrafLukins1979, author = {Sebald, Walter and Graf, T. and Lukins, H. B.}, title = {The dicyclohexylcarbodiimide-binding protein of the mitochondrial ATPase complex from Neurospora crassa and Saccharomyces cerevisiae. Identification and isolation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62792}, year = {1979}, abstract = {Incubation of mitochondria from Neuraspara crassa and Saccharomyces cerevisiae with the radioactive ATPase inhibitor [14C]dicyclohexylcarbodiimide results in the irreversible and rather specific labelling of a low-molecular-weight polypeptide. This dicyclohexylcarbodiimide-binding protein is identical with the smallest subunit (Mr 8000) of the mitochondrial ATPase complex, and it occurs as oligomer, probably as hexamer, in the enzyme protein. The dicyclohexylcarbodiimide-binding protein is extracted from whole mitochondria with neutral chloroformjmethanol both in the free and in the inhibitor-modified form. In Neuraspara and yeast, this extraction is highly selective and the protein is obtained in homogeneaus form when the mitochondria have been prewashed with certain organic solvents. The bound dicyclohexylcarbodiimide Iabel is enriched in the purified protein up to 50-fold compared to whole mitochondria. Based on the amino acid analysis, the dicyclohexylcarbodiimide-binding protein from Neurospora and yeast consists of at least 81 and 76 residues, respectively. The content of hydrophobic residues is extremely high. Histidine and tryptophan are absent. The N-terminal ~mino acid is tyrosine in Neuraspara and formylmethionine in yeast.}, subject = {Biochemie}, language = {en} } @article{GrafSebald1978, author = {Graf, T. and Sebald, Walter}, title = {The dicyclohexylcarbodiimide-binding protein of the mitochondrial ATPase complex from beef heart. Isolation and amino acid composition}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62806}, year = {1978}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{MuellerFiebigWeidaueretal.2013, author = {Mueller, Thomas D. and Fiebig, Juliane E. and Weidauer, Stella E. and Qiu, Li-Yan and Bauer, Markus and Schmieder, Peter and Beerbaum, Monika and Zhang, Jin-Li and Oschkinat, Hartmut and Sebald, Walter}, title = {The Clip-Segment of the von Willebrand Domain 1 of the BMP Modulator Protein Crossveinless 2 Is Preformed}, series = {Molecules}, journal = {Molecules}, doi = {10.3390/molecules181011658}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97196}, year = {2013}, abstract = {Bone Morphogenetic Proteins (BMPs) are secreted protein hormones that act as morphogens and exert essential roles during embryonic development of tissues and organs. Signaling by BMPs occurs via hetero-oligomerization of two types of serine/threonine kinase transmembrane receptors. Due to the small number of available receptors for a large number of BMP ligands ligand-receptor promiscuity presents an evident problem requiring additional regulatory mechanisms for ligand-specific signaling. Such additional regulation is achieved through a plethora of extracellular antagonists, among them members of the Chordin superfamily, that modulate BMP signaling activity by binding. The key-element in Chordin-related antagonists for interacting with BMPs is the von Willebrand type C (VWC) module, which is a small domain of about 50 to 60 residues occurring in many different proteins. Although a structure of the VWC domain of the Chordin-member Crossveinless 2 (CV2) bound to BMP-2 has been determined by X-ray crystallography, the molecular mechanism by which the VWC domain binds BMPs has remained unclear. Here we present the NMR structure of the Danio rerio CV2 VWC1 domain in its unbound state showing that the key features for high affinity binding to BMP-2 is a pre-oriented peptide loop.}, language = {en} } @article{MichelWachterSebald1979, author = {Michel, R. and Wachter, E. and Sebald, Walter}, title = {Synthesis of a larger precursor for the proteolipid subunit of the mitochondrial ATPase complex of Neurospora crassa in a cell-free wheat germ system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62789}, year = {1979}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{SebaldFriedlSchaireretal.1982, author = {Sebald, Walter and Friedl, P. and Schairer, H. U. and Hoppe, J.}, title = {Structure and genetics of the H\(^+\)-conducting F\(_0\) portion of the ATP synthase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62733}, year = {1982}, abstract = {The ATP synthase occurs in remarkably conserved form in procaryotic and eucaryotic cells. Thus, our present knowledge of ATP synthase is derived from sturlies of the enzyme from different organisms, each affering specific experimental possibilities. In recent tim es, research on the H\(^+\) -conducting F0 part of the ATP synthase has been greatly stimulated by two developments in the Escherichio coli system. Firstly, the purification and reconstitution of the whole ATP synthase as weil as the proton conductor Fa from E. coli have been achieved. These functionally active preparations are well defined in terms of subunit composition, similar to the thermophilic enzyme from PS-3 studied by Kagawa's group.u Secondly, the genetics and the molecular cloning of the genes of all the F\(_0\) subunits from E. coli yielded information on the function of subunit polypeptides and essential amino acid residues. Furthermore, the amino acid sequence of hydrophobic F\(_0\) subunits, which are difficult to analyze by protein-chemical techniques, could be derived from the nucleotide sequence of the genes. These achievements, which shall be briefly summarized in the next part of this communication, provide the framework to study specific aspects of the structure and function of the F\(_0\) subunits.}, subject = {Biochemie}, language = {en} } @article{DummerPosseckertNestleetal.1992, author = {Dummer, R. and Posseckert, G. and Nestle, F. and Witzgall, R. and Burger, M. and Becker, J. C. and Sch{\"a}fer, E. and Wiede, J. and Sebald, Walter and Burg, G.}, title = {Soluble interleukin-2 receptors inhibit interleukin 2-dependent proliferation and cytotoxicity: explanation for diminished natural killer cell activity in cutaneous T-cell lymphomas in vivo?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62473}, year = {1992}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} }