@phdthesis{Lohr2008, author = {Lohr, Andreas}, title = {Self-Assembly of Merocyanines : Thermodynamic and Kinetic Insights into the Formation of Well-Defined Dye Aggregates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28964}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The present thesis demonstrates the potential of dipolar aggregation of merocyanine dyes as novel directional and specific supramolecular binding motif for the creation of more elaborate supramolecular architectures beyond simple dimers. Furthermore, the self-assembly studies into bis(merocyanine) nanorods gave new insights into the kinetics of morphogenesis in supramolecular aggregates.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Schmidt2011, author = {Schmidt, Ralf}, title = {Hamilton-Receptor-Mediated Self-Assembly of Merocyanine Dyes into Supramolecular Polymers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56265}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Selbstorganisation von Merocyaninfarbstoffen zu supramolekularen Polymeren wurde untersucht. Dabei konnte die Anordnung der hoch dipolaren Farbstoffe durch die Verwendung von verschiedenen Kombinationen von Wasserstoffbr{\"u}ckenbindungsmotiven und dipolarer Aggregation der Chromophore gesteuert.}, subject = {Selbstorganisation}, language = {en} } @phdthesis{Buerckstuemmer2011, author = {B{\"u}rckst{\"u}mmer, Hannah}, title = {Merocyanine dyes for solution-processed organic bulk heterojunction solar cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66879}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The technology of organic photovoltaics offers the possibility of low-cost devices due to easy fabrication procedures and low material consumption and at the same time high flexibility concerning the applied substrates or design features such as the color palette. Owing to these benefits, this research field is highly active, being reflected by the continuously rising number of publications. Chapter 1 gives an extensive overview of a part of these reports, namely the field of solution-processed BHJ organic solar cells using small molecules as electron-donating materials. In the early years of this research area (2006-2008), well known hole transporting materials such as triphenylamine based chromophores, oligothiophenes and polyaromatic hydrocarbons were applied. However, many of these dyes lacked absorption at longer wavelengths and were therefore limited in their light harvesting qualities. Later, chromophores based on low band gap systems consisting of electron-donating and electron-accepting units showing internal charge transfer overcame this handicap. Today, donor-substituted diketopyrrolopyrroles (D-A-D chromophores), squaraines (D-A-D chromophores) and acceptor substituted oligothiophenes (A-D-A chromophores) are among the most promising dyes for small molecule based organic solar cells with PCEs of 4-5\%. This work is based on the findings of the groups of W{\"u}rthner and Meerholz, which tested merocyanine dyes for the first time in organic BHJ solar cells.4 According to the B{\"a}ssler theory85, the high dipolarity of these dyes should hamper the charge transport, but the obtained first results with PCE of 1.7\% proved the potenital of this class of dyes for this application. Merocyanine dyes offer the advantages of facile synthesis and purification, high tinctorial strength and monodispersity. Additionally, the electronic structure of the dyes, namely the absorption as well as the electrochemical properties, can be adjusted by using the right combination of donor and acceptor units. For these reasons, this class of dye is highly interesting for the application in organic solar cells. It was the aim of the thesis to build more knowledge about the potential and limitations of merocyanines in BHJ photovoltaic devices. By screening a variety of donor and acceptor groups a comprehensive data set both for the molecular materials as well as for the respective solar devices was generated and analyzed. As one focus, the arrangement of the chromophores in the solid state was investigated to gain insight about the packing in the solar cells and its relevance for the performance of the latter. To do so, X-ray single crystal analyses were performed for selected molecules. By means of correlations between molecular properties and the characteristics of the corresponding solar cells, several design rules to generate efficient chromophores for organic photovoltaics were developed. The different donor and acceptor moieties applied in this work are depicted in the following ...}, subject = {organische Solarzelle}, language = {en} } @phdthesis{Ojala2012, author = {Ojala, Antti}, title = {Merocyanine Dyes as Donor Materials in Vacuum-Deposited Organic Solar Cells: Insights into Structure-Property-Performance Relationships}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70073}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {In this study, a double-donor concept is used to improve the performance of thermally evaporated merocyanine(s)/C60 bulk heterojunction (BHJ) solar cells. It is shown that the co-evaporation of two merocyanine dyes with absorption bands at ~ 500 nm (SW dye) and ~ 650 nm (LW dye), respectively, together with C60 fullerene results in an improvement of open-circuit voltage (VOC), short-circuit current (JSC) as well as total power conversion efficiency (PCE) compared to the best single-donor cell. The enhancement of JSC is attributed to a higher photon harvesting efficiency of the mixed-donor devices due to a better spectral coverage.}, subject = {Merocyanine}, language = {en} } @phdthesis{ArjonaEsteban2015, author = {Arjona Esteban, Alhama}, title = {Merocyanine Dyes as Organic Semiconductors for Vacuum-processed Solar Cell and Transistor Devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129096}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The present thesis comprises the synthesis of new functional merocyanine dyes, the study of their electro-optical properties as well as solid state packing and their application as p-type semiconductor materials in transistor and solar cell devices. The absorption properties of the obtained compounds could be modified by variation of the donor unit, the introduction of electron-withdrawing substituents in the acceptor unit or elongation of the polymethine chain. For a particular dye, the absorption band could be shifted by more than 160 nm by increasing the solvent polarity due to a conformational switch between a merocyanine-like and a cyanine-like structure. Single crystal analyses revealed that the studied dyes tend to pack either in an antiparallel fashion forming dimers with no overall dipole moment or in a staircase-like pattern where the dipole moments point to the same direction and are only balanced by another staircase oriented in the opposite direction (stair dimer). With respect to application as semiconductor materials, the latter packing arrangement resulted most favorable for charge carrier mobility. We concluded that this packing motif is preserved in the solar cell devices, where the selenium-containing dye afforded the highest performance of this series for an optimized planar-mixed heterojunction solar cell (6.2 \%).}, subject = {Merocyanine}, language = {en} } @phdthesis{Liess2017, author = {Liess, Andreas}, title = {Structure-Property Relationships of Merocyanine Dyes in the Solid State: Charge Transport and Exciton Coupling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152900}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The present thesis demonstrates the importance of the solid state packing of dipolar merocyanine dyes with regard to charge transport and exciton coupling. Due to the charge transport theory for disordered materials, it is expected that high ground state dipole moments in amorphous thin films lead to low mobility values due to a broadening of the density of states. However, due to their inherent dipolarity, merocyanine dyes usually align in antiparallel dimers in an ordered fashion. The examination of twenty different molecules with ground state dipole moments up to 15.0 D shows that by a high dipolarity and well-defined sterics, the molecules pack in a highly regular two-dimensional brickwork-type structure, which is beneficial for hole transport. Utilization of these molecules for organic thin-film transistors (OTFTs) leads to hole mobility values up to 0.21 cm²/Vs. By fabrication of single crystal field-effect transistors (SCFETs) for the derivative showing the highest mobility values in OTFTs, even hole mobilities up to 2.34 cm²/Vs are achieved. Hence, merocyanine based transistors show hole mobility values comparable to those of conventional p-type organic semiconductors and therefore high ground state dipole moments are not necessarily disadvantageous regarding high mobility applications. By examination of a different series of ten merocyanine dyes with the same chromophore backbone but different donor substituents, it is demonstrated that the size of the donor has a significant influence on the optical properties of thin films. For small and rigid donor substituents, a hypsochromic shift of the absorption compared to the monomer absorption in solution is observed due to the card stack like packing of the molecules in the solid state. By utilization of sterical demanding or flexible donor substituents, a zig-zag type packing is observed, leading to a bathochromical shift of the absorption. These packing motifs and spectral shifts with an offset of 0.93 eV of the H- and J-bands comply with the archetype examples of H- and J-aggregates from Kasha's exciton theory.}, subject = {Exziton}, language = {en} } @phdthesis{Kirchner2019, author = {Kirchner, Eva}, title = {Discrete Supramolecular Stacks by Self-Assembly and Folding of Bis(merocyanine) Dyes}, doi = {10.25972/OPUS-15941}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159419}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The present thesis describes the development of a strategy to create discrete finite-sized supramolecular stacks of merocyanine dyes. Thus, bichromophoric stacks of two identical or different chromophores could be realized by folding of bis(merocyanine) dyes and their optical properties were discussed in terms of exciton theory. Quantum chemical calculations revealed strong exciton coupling between the chromophores within the homo- and hetero-π-stacks and the increase of the J-band of the hetero-dimers with increasing energy difference between the excited states of the chromophores could be attributed not only to the different magnitudes of transition dipole moments of the chromophores but also to the increased localization of the excitation in the respective exciton state. Furthermore, careful selection of the length of the spacer unit that defines the interplanar distance between the tethered chromophores directed the self-assembly of the respective bis(merocyanines) into dimers, trimers and tetramers comprising large, structurally precise π-stacks of four, six or eight merocyanine chromophores. It could be demonstrated that the structure of such large supramolecular architectures can be adequately elucidated by commonly accessible analysis tools, in particular NMR techniques in combination with UV/vis measurements and mass spectrometry. Supported by TDDFT calculations, the absorption spectra of the herein investigated aggregates could be explained and a relationship between the absorption properties and the number of stacking chromophores could be established based on exciton theory.}, subject = {Merocyanine}, language = {en} } @phdthesis{HechtgebWagener2019, author = {Hecht [geb. Wagener], Reinhard Johannes}, title = {Processing and Characterization of Bulk Heterojunction Solar Cells Based on New Organic n-Type Semiconductors}, doi = {10.25972/OPUS-16138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161385}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {This thesis established the fabrication of organic solar cells of DA dye donors and fullerene acceptors under ambient conditions in our laboratory, however, with reduced power conversion efficiencies compared to inert conditions. It was shown that moisture had the strongest impact on the stability and reproducibility of the solar cells. Therefore, utilization of robust materials, inverted device architectures and fast fabrication/characterization are recommended if processing takes place in air. Furthermore, the dyad concept was successfully explored in merocyanine dye-fullerene dyads and power conversion efficiencies of up to 1.14 \% and 1.59 \% were measured under ambient and inert conditions, respectively. It was determined that the major drawback in comparison to comparable BHJ devices was the inability of the dyad molecules to undergo phase separation. Finally, two series of small molecules were designed in order to obtain electron transport materials, using the acceptor-core-acceptor motive. By variation of the acceptor units especially the LUMO levels could be lowered effectively. Investigation of the compounds in organic thin film transistors helped to identify promising molecules with electron transport properties. Electron transport mobilities of up to 7.3 × 10-2 cm2 V-1 s-1 (ADA2b) and 1.39 × 10-2 cm2 V-1 s-1 (AπA1b) were measured in air for the ADA and AπA dyes, respectively. Investigation of selected molecules in organic solar cells proved that these molecules work as active layer components, even though power conversion efficiencies cannot compete with fullerene based devices yet. Thus, this thesis shows new possibilities that might help to develop and design small molecules as substitutes for fullerene acceptors.}, subject = {Heterosolarzelle}, language = {en} } @phdthesis{Dietzsch2022, author = {Dietzsch, Julia}, title = {Nucleic acid-mediated fluorescence activation and chromophore assembly}, doi = {10.25972/OPUS-25976}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259761}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Nucleic acids are not only one of the most important classes of macromolecules in biochemistry but also a promising platform for the defined arrangement of chromophores. Thanks to their precise organization by directional polar and hydrophobic interactions, oligonucleotides can be exploited as suitable templates for multichromophore assemblies with predictable properties. To expand the toolbox of emissive, base pairing nucleobase analogs several barbituric acid merocyanine (BAM) chromophores with tunable spectroscopic properties were synthesized and incorporated into RNA, DNA and glycol nucleic acid (GNA) oligonucleotides. A multitude of duplexes containing up to ten BAM chromophores was obtained and analysis by spectroscopic methods revealed the presence of dipolarly coupled merocyanine aggregates with properties strongly dependent on the chromophore orientation toward each other and the backbone conformation. These characteristics were exploited for various applications such as FRET pair formation and polymerase chain reaction (PCR) experiments. The observed formation of higher-order aggregates implies future applications of these new oligonucleotide-chromophore systems as light-harvesting DNA nanomaterials. Besides oligonucleotide templated covalent assembly of chromophores also non-covalent nucleic acid-chromophore complexes are a broad field of research. Among these, fluorogenic RNA aptamers are of special interest with the most versatile ones based on derivatives of the GFP chromophore hydroxybenzylidene imidazolone (HBI). Therefore, new HBI-derived chromophores with an expanded conjugated system and an additional exocyclic amino group for an enhanced binding affinity were synthesized and analyzed in complex with the Chili aptamer. Among these, structurally new fluorogenes with strong fluorescence activation upon binding to Chili were identified which are promising for further derivatization and application as color-switching sensor devices for example.}, subject = {Nucleins{\"a}uren}, language = {en} } @article{DietzschBialasBandorfetal.2022, author = {Dietzsch, Julia and Bialas, David and Bandorf, Johannes and W{\"u}rthner, Frank and H{\"o}bartner, Claudia}, title = {Tuning Exciton Coupling of Merocyanine Nucleoside Dimers by RNA, DNA and GNA Double Helix Conformations}, series = {Angewandte Chemie International Edition}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202116783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254565}, pages = {e202116783}, year = {2022}, abstract = {Exciton coupling between two or more chromophores in a specific environment is a key mechanism associated with color tuning and modulation of absorption energies. This concept is well exemplified by natural photosynthetic proteins, and can also be achieved in synthetic nucleic acid nanostructures. Here we report the coupling of barbituric acid merocyanine (BAM) nucleoside analogues and show that exciton coupling can be tuned by the double helix conformation. BAM is a nucleobase mimic that was incorporated in the phosphodiester backbone of RNA, DNA and GNA oligonucleotides. Duplexes with different backbone constitutions and geometries afforded different mutual dye arrangements, leading to distinct optical signatures due to competing modes of chromophore organization via electrostatic, dipolar, - stacking and hydrogen-bonding interactions. The realized supramolecular motifs include hydrogenbonded BAM-adenine base pairs and antiparallel as well as rotationally stacked BAM dimer aggregates with distinct absorption, CD and fluorescence properties.}, language = {en} }