@article{HurdGruebelWojciechowskietal.2021, author = {Hurd, Paul J. and Gr{\"u}bel, Kornelia and Wojciechowski, Marek and Maleszka, Ryszard and R{\"o}ssler, Wolfgang}, title = {Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-86078-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260059}, pages = {6852}, year = {2021}, abstract = {In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 mu m long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (similar to 2.1 mu m). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain.}, language = {en} } @article{ChenRawatSamikannuetal.2021, author = {Chen, Chunguang and Rawat, Divya and Samikannu, Balaji and Bender, Markus and Preissner, Klaus T. and Linn, Thomas}, title = {Platelet glycoprotein VI-dependent thrombus stabilization is essential for the intraportal engraftment of pancreatic islets}, series = {American Journal of Transplantation}, volume = {21}, journal = {American Journal of Transplantation}, doi = {10.1111/ajt.16375}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224471}, pages = {2079 -- 2089}, year = {2021}, abstract = {Platelet activation and thrombus formation have been implicated to be detrimental for intraportal pancreatic islet transplants. The platelet-specific collagen receptor glycoprotein VI (GPVI) plays a key role in thrombosis through cellular activation and the subsequent release of secondary mediators. In aggregometry and in a microfluidic dynamic assay system modeling flow in the portal vein, pancreatic islets promoted platelet aggregation and triggered thrombus formation, respectively. While platelet GPVI deficiency did not affect the initiation of these events, it was found to destabilize platelet aggregates and thrombi in this process. Interestingly, while no major difference was detected in early thrombus formation after intraportal islet transplantation, genetic GPVI deficiency or acute anti-GPVI treatment led to an inferior graft survival and function in both syngeneic mouse islet transplantation and xenogeneic human islet transplantation models. These results demonstrate that platelet GPVI signaling is indispensable in stable thrombus formation induced by pancreatic islets. GPVI deficiency resulted in thrombus destabilization and inferior islet engraftment indicating that thrombus formation is necessary for a successful intraportal islet transplantation in which platelets are active modulators.}, language = {en} }