@phdthesis{Hoffmann2020, author = {Hoffmann, Mareike}, title = {Effector System Prioritization in Multitasking}, doi = {10.25972/OPUS-20108}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201084}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Multitasking, defined as performing more than one task at a time, typically yields performance decrements, for instance, in processing speed and accuracy. These performance costs are often distributed asymmetrically among the involved tasks. Under suitable conditions, this can be interpreted as a marker for prioritization of one task - the one that suffers less - over the other. One source of such task prioritization is based on the use of different effector systems (e.g., oculomotor system, vocal tract, limbs) and their characteristics. The present work explores such effector system-based task prioritization by examining to which extent associated effector systems determine which task is processed with higher priority in multitasking situations. Thus, three different paradigms are used, namely the simultaneous (stimulus) onset paradigm, the psychological refractory period (PRP) paradigm, and the task switching paradigm. These paradigms invoke situations in which two (in the present studies basic spatial decision) tasks are a) initiated at exactly the same time, b) initiated with a short varying temporal distance (but still temporally overlapping), or c) in which tasks alternate randomly (without temporal overlap). The results allow for three major conclusions: 1. The assumption of effector system-based task prioritization according to an ordinal pattern (oculomotor > pedal > vocal > manual, indicating decreasing prioritization) is supported by the observed data in the simultaneous onset paradigm. This data pattern cannot be explained by a rigid "first come, first served" task scheduling principle. 2. The data from the PRP paradigm confirmed the assumption of vocal-over-manual prioritization and showed that classic PRP effects (as a marker for task order-based prioritization) can be modulated by effector system characteristics. 3. The mere cognitive representation of task sets (that must be held active to switch between them) differing in effector systems without an actual temporal overlap in task processing, however, is not sufficient to elicit the same effector system prioritization phenomena observed for overlapping tasks. In summary, the insights obtained by the present work support the assumptions of parallel central task processing and resource sharing among tasks, as opposed to exclusively serial processing of central processing stages. Moreover, they indicate that effector systems are a crucial factor in multitasking and suggest an integration of corresponding weighting parameters in existing dual-task control frameworks.}, subject = {Mehrfacht{\"a}tigkeit}, language = {en} } @article{HoffmannKochHuestegge2022, author = {Hoffmann, Mareike A. and Koch, Iring and Huestegge, Lynn}, title = {Are some effector systems harder to switch to? In search of cost asymmetries when switching between manual, vocal, and oculomotor tasks}, series = {Memory \& Cognition}, volume = {50}, journal = {Memory \& Cognition}, number = {7}, doi = {10.3758/s13421-022-01287-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324887}, pages = {1563-1577}, year = {2022}, abstract = {In task-switching studies, performance is typically worse in task-switch trials than in task-repetition trials. These switch costs are often asymmetrical, a phenomenon that has been explained by referring to a dominance of one task over the other. Previous studies also indicated that response modalities associated with two tasks may be considered as integral components for defining a task set. However, a systematic assessment of the role of response modalities in task switching is still lacking: Are some response modalities harder to switch to than others? The present study systematically examined switch costs when combining tasks that differ only with respect to their associated effector systems. In Experiment 1, 16 participants switched (in unpredictable sequence) between oculomotor and vocal tasks. In Experiment 2, 72 participants switched (in pairwise combinations) between oculomotor, vocal, and manual tasks. We observed systematic performance costs when switching between response modalities under otherwise constant task features and could thereby replicate previous observations of response modality switch costs. However, we did not observe any substantial switch-cost asymmetries. As previous studies using temporally overlapping dual-task paradigms found substantial prioritization effects (in terms of asymmetric costs) especially for oculomotor tasks, the present results suggest different underlying processes in sequential task switching than in simultaneous multitasking. While more research is needed to further substantiate a lack of response modality switch-cost asymmetries in a broader range of task switching situations, we suggest that task-set representations related to specific response modalities may exhibit rapid decay.}, language = {en} }