@phdthesis{Makgotlho2014, author = {Makgotlho, Phuti Edward}, title = {Molecular characterization of the staphylococcal two component system sae and its role in the regulation of the adhesin Eap under SDS stress stimulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149403}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The Staphylococcus aureus two component system (TCS) sae governs expression of numerous virulence factors, including Eap (extracellular adherence protein), which in turn among other functions also mediates invasion of host cells. The sae TCS is encoded by the saePQRS operon, with saeS coding for the sensor histidine kinase (SaeS) and saeR encoding the response regulator (SaeR). The saeRS system is preceded by two additional open reading frames (ORFs), saeP and saeQ, which are predicted to encode a lipoprotein (SaeP) and a membrane protein (SaeQ), respectively. Earlier, we have shown that SDS-containing subinhibitory concentrations of biocides (Perform®) and SDS alone activate sae transcription and increase cellular invasiveness in S. aureus strain Newman. The effect is associated with an amino acid exchange in the N-terminus of SaeS (L18P), specific to strain Newman. In this work, the role of whether the two additional genes, saePQ coding for the accessory proteins SaeP and SaeQ, respectively, are involved in SDS-mediated saeRS was investigated. It could demonstrated that the lack of the SaeP protein resulted in an increased saeRS transcription without SDS stress in both SaeSL/P variants, while the SDS effect was less pronounced on sae and eap expression compared to the Newman wildtype, suggesting that the SaeP protein represses the sae system. Also, SDS-mediated inductions of sae and eap transcription along with enhanced invasion were found to be dependent on presence of the SaeSP variant in Newman wildtype. On the other hand, the study also shows that the saePQ region of the sae operon is required for fully functional two-component system saeRS under normal growth conditions, but it is not involved in SDS-mediated activation of the saeS signaling and sae-target class I gene, eap. In the second approach, the study investigates whether SDS-induced sae expression and host cell invasion is common among S. aureus strains not carrying the (L18P) point mutation. To demonstrate this strain Newman, its isogenic saeS mutants, and various S. aureus isolates were analysed for sae, eap expression and cellular invasiveness. Among the strains tested, SDS exposure resulted only in an increase of sae transcription, Eap production and cellular invasiveness in strain Newman wild type and MRSA strain ST239-635/93R, the latter without an increase in Eap. Interestingly, the epidemic community-associated MRSA strain, USA300 LAC showed a biphasic response in sae transcription at different growth stages, which, however, was not accompanied by increased invasiveness. All other clinical isolates investigated displayed a decrease of the parameters tested. While in strain Newman the SDS effect was due to the saeSP allele, this was not the case in strain ST239-635/93R and the biphasic USA300 strains. Also, increased invasiveness of ST239-635/93R was found to be independent of Eap production. Furthermore, to investigate the global effect of SDS on sae target gene expression, strain Newman wild-type and Newman ∆sae were treated with SDS and analyzed for their transcription profiles of sae target genes using microarray assays. We could show that subinhibitory concentrations of SDS upregulate and downregulate gene expression of several signaling pathways involved in biosynthetic, metabolic pathways as well as virulence, host cell adherence, stress reponse and many hypothetical proteins. In summary, the study sheds light on the role of the upstream region saePQ in SDS-mediated saeRS and eap expression during S. aureus SDS stress. Most importantly, the study also shows that subinhibitory SDS concentrations have pronounced strain-dependent effects on sae transcription and subsequent host cell invasion in S. aureus, with the latter likely to be mediated in some strains by other factors than the known invasin Eap and FnBP proteins. Moreover, there seems to exist more than the saeSP-mediated mechanism for SDS-induced sae transcription in clinical S. aureus isolates. These results help to further understand and clarify virulence and pathogenesis mechanisms and their regulation in S. aureus.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{Koch2014, author = {Koch, Miriam}, title = {Role of Coagulation Factor XII in Atherosclerosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Atherosclerosis is considered a chronic inflammatory disease of the arterial vessel wall which is not only modulated by innate and adaptive immune responses but also by factors of the blood coagulation system. In general hypercoagulability seems to increase the development and progression of experimental atherosclerosis in mice on an atherogenic background. In addition, the great majority of coagulation proteins including coagulation factor XII (FXII) have been detected in early and advanced human atherosclerotic lesions supporting the cross-link between the coagulation system and atherosclerosis. Moreover, FXII has been detected in close proximity to macrophages, foam cells and smooth muscle cells in these lesions and has been demonstrated to be functionally active in human plaques. Although these data indicate that factor XII may play a role in atherogenesis a direct contribution of FXII to atherogenesis has not been addressed experimentally to date. Furthermore, clinical studies examining the function of FXII in vascular disease have yielded conflicting results. Hence, in order to investigate the function of coagulation factor XII in atherosclerosis apolipoprotein E and FXII-deficient (F12\(^{-/-}\) apoE\(^{-/-}\)) mice were employed. Compared to F12\(^{+/+}\)apoE\(^{-/-}\) controls, atherosclerotic lesion formation was reduced in F12\(^{-/-}\)apoE\(^{-/-}\) mice, associated with diminished systemic T-cell activation and Th1-cell polarization after 12 weeks of high fat diet. Moreover, a significant decrease in plasma levels of complement factor C5a was evidenced in F12\(^{-/-}\)apoE\(^{-/-}\) mice. Interestingly, C5a increased the production of interleukin-12 (IL-12) in dendritic cells (DCs) and enhanced their capacity to trigger antigen-specific interferon-gamma (IFNγ) production in OTII CD4\(^+\) T cells in vitro. Importantly, a reduction in frequencies of IL-12 expressing splenic DCs from atherosclerotic F12\(^{-/-}\)apoE\(^{-/-}\) versus F12\(^{+/+}\)apoE\(^{-/-}\) mice was observed in vivo, accompanied by a diminished splenic Il12 transcript expression and significantly reduced IL-12 serum levels. Consequently, these data reveal FXII to play an important role in atherosclerotic lesion formation and to promote DC-induced and systemic IL 12 expression as well as pro-inflammatory T-cell responses likely at least in part via the activation of the complement system.}, subject = {Gerinnungsfaktor XII}, language = {en} } @phdthesis{Mathes2014, author = {Mathes, Denise Sandra}, title = {Die Rolle von T-Lymphozyten im myokardialen Reperfusionsschaden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110802}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Der Myokardinfarkt (MI) geh{\"o}rt nach wie vor zu den f{\"u}hrenden Todesursachen weltweit. Eine Minimierung der Infarktgr{\"o}ße, die durch die Dauer der Isch{\"a}mie bestimmt wird, ist wesentlich f{\"u}r das {\"U}berleben und die Lebensqualit{\"a}t des Myokardinfarkt-Patienten. Die Reperfusion stellt aktuell eine zentrale klinische Intervention dar, um den myokardialen Schaden einzugrenzen. Dennoch f{\"u}hrt die Reperfusion per se zu zus{\"a}tzlichem Schaden am Herzen. Somit ist die Erforschung neuer Strategien zur Minimierung des myokardialen Reperfusionsschadens international von Interesse. Die Pathophysiologie des myokardialen Reperfusionsschadens ist vielschichtig und einige Komponenten sind auch heute in ihrer Wirkweise noch nicht vollst{\"a}ndig mechanistisch verstanden. Die vorliegende Arbeit untersucht die Rolle von CD4+ T-Zellen und insbesondere deren Subpopulation der regulatorischen T-Zellen im myokardialen Reperfusionsschaden und stellt neue, auf T-Zellen abzielende, Therapien in Erg{\"a}nzung zur myokardialen Reperfusion vor. Zun{\"a}chst wurde eine Infiltration von T-Zellen in das Myokard nach Isch{\"a}mie-Reperfusion (I/ R) untersucht. Nach der Isch{\"a}mie-Reperfusion wurden infiltrierende CD4+ T-Zellen als quantitativ f{\"u}hrend und aktiviert identifiziert und erwiesen sich in der Infarktgr{\"o}ßenbestimmung als relevante Mediatoren des Reperfusionsschadens. CD25+Foxp3+ regulatorische T-Zellen (Treg) stellen eine Subpopulation von CD4+ T-Zellen mit immunsuppressiven Eigenschaften dar, die schnell und niederschwellig aktiviert werden k{\"o}nnen und kommen somit als zum Reperfusionsschaden beitragend in Frage. Mit Hilfe des DEREG (DEpletion of REGulatory T cells) -Mausmodells wurde gezeigt, dass regulatorische T-Zellen zum myokardialen Reperfusionsschaden beitragen; Treg-depletierte DEREG-M{\"a}use waren vor dem Reperfusionsschaden gesch{\"u}tzt und zeigten kleinere Infarktgr{\"o}ßen als die Kontrolltiere. Zudem wurde mittels Transferexperimenten gezeigt, dass f{\"u}r den Treg-vermittelten Reperfusionsschaden die Anwesenheit von CD25- konventionellen T-Zellen (Tconv) erforderlich ist. Regulatorische T-Zellen stellen also einen in der vorliegenden Arbeit identifizierten potentiellen Angriffspunkt zur Reduktion des myokardialen Reperfusionsschadens dar. Anhand von T-Zell-Rezeptor transgenen OT-II M{\"a}usen und MHC (Major Histocompatibility Complex) Klasse II Knockout (KO) Tieren wurde gezeigt, dass Autoantigenerkennung im myokardialen Reperfusionsschaden eine Rolle spielt. Zur vollen T-Zell-Aktivierung notwendig ist neben dem MHC Klasse II-Signalweg und Kostimulatoren auch das Molek{\"u}le CD154 (CD40L). Die Gabe eines inhibitorischen anti-CD154-Antik{\"o}rpers reduzierte die Infarktgr{\"o}ße in Wildtyp-Tieren sigifikant. Der myokardiale Reperfusionsschaden kann neben Zellen der adaptiven Immunit{\"a}t auch durch Neutrophile Granulozyten, Pl{\"a}ttchen oder Inflammation des Endothels verst{\"a}rkt werden. Knockout M{\"a}use mit einer Defizienz an CD4+ T-Zellen verf{\"u}gten {\"u}ber eine verbesserte Mikroperfusion. Mechanistisch war nach 24h Reperfusion die absolute Zellzahl an Neutrophilen Granulozyten im CD4 KO im Vergleich zu Wildtyp-M{\"a}usen unver{\"a}ndert; in Endothelzellen war die Regulation bestimmter Gene (VEGFα, TIMP-1 und Eng) nach I/ R im CD4 KO jedoch ver{\"a}ndert. Zusammengefasst zeigt die vorliegende Arbeit eine zentrale Rolle der Antigen-Erkennung durch den T-Zell-Rezeptor zur Aktivierung von CD4+ T-Zellen im myokardialen Reperfusionsschaden. In Anwesenheit von CD4+Foxp3+ T-Zellen ist der Reperfusionsschaden erh{\"o}ht. Somit k{\"o}nnen CD4+Foxp3+ T-Zellen potentiell als Ziel f{\"u}r neuartige Therapien des Myokardinfarkts genutzt werden.}, subject = {Reperfusion}, language = {de} } @phdthesis{Knobloch2014, author = {Knobloch, Gunnar}, title = {Biochemical and structural characterization of chronophin}, doi = {10.25972/OPUS-11008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110088}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The haloacid dehalogenase (HAD) family of phosphatases is an ancient, ubiquitous group of enzymes, and their emerging role in human health and disease make them attractive targets for detailed analyses. This thesis comprises the biochemical and structural characterization of chronophin, an HAD-type phosphatase, which has been shown to act on Ser3-phosphorylated cofiln-1, a key regulator of actin dynamics, and on the Ser/Thr-phosphorylated steroid receptor co-activator 3 (SRC-3). Besides being a specific phosphoprotein phosphatase, chronophin also acts on the small molecule pyridoxal 5'-phosphate (PLP, vitamin B6), implying that chronophin serves as a regulator of a variety important physiological pathways. The analysis of chronophin was performed on different levels, ranging from intrinsic regulatory mechanisms, such as the allosteric regulation via dimerization or the characterization of specificity determinants, to modes of extrinsic modulation, including the association with putative interacting proteins or the generation of chronophin-specific inhibitors. The association of the previously identified putative chronophin interactors calcium- and integrinbinding protein 1 (CIB1) and calmodulin was investigated using recombinantly expressed and purified proteins. These studies revealed that the interaction of chronophin with CIB1 or calmodulin is mutually exclusive and regulated by calcium. Neither CIB1 nor calmodulin had an effect on the in vitro chronophin phosphatase activity towards PLP or phospho-cofilin-1, but might regulate other functions of this important phosphatase. The role of chronophin dimerization was studied by generating a constitutively monomeric variant, which showed reduced PLP hydrolyzing activity. X-ray crystallographic studies revealed that dimerization is essential for the positioning of the substrate specificity loop in chronophin, unraveling a previously unknown mechanism of allosteric regulation through a homophilic interaction. This mechanism potentially applies to other enzymes of the C2a subfamily of HAD-type phosphatases, as all structurally characterized members show a conserved mode of dimerization. The general determinants of substrate specificity in the C2a subfamily of HAD phosphatases were investigated by performing domain swapping experiments with chronophin and its paralog AUM and subsequent biochemical analyses of the hybrid proteins. The X-ray crystallographic structure determination of the chronophin catalytic domain equipped with the AUM capping domain revealed the first partial structure of AUM. This structural information was then used in subsequent studies that analyzed the divergent substrate specificities of AUM and chronophin in an evolutionary context. Finally, a set of four chronophin inhibitors were generated based on the structure of PLP and characterized biochemically, showing moderate inhibitory effects with IC50-values in the micromolar range. These compounds nevertheless constitute valuable tools for future in vitro experiments, such as studies concerning the structure-function relationship of chronophin as a PLP phosphatase. In addition, the crystal structure of one inhibitor bound to chronophin could be solved. These results provide the basis for the further development of competitive chronophin inhibitors with increased specificity and potency.}, subject = {Phosphatasen}, language = {en} } @phdthesis{Schaefer2014, author = {Sch{\"a}fer, Christin Marliese}, title = {Approaching antimicrobial resistance - Structural and functional characterization of the fungal transcription factor Mrr1 from Candida albicans and the bacterial ß-ketoacyl-CoA thiolase FadA5 from Mycobacterium tuberculosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108400}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The number of fungal infections is rising in Germany and worldwide. These infections are mainly caused by the opportunistic fungal pathogen C. albicans, which especially harms immunocompromised people. With increasing numbers of fungal infections, more frequent and longer lasting treatments are necessary and lead to an increase of drug resistances, for example against the clinically applied therapeutic fluconazole. Drug resistance in C. albicans can be mediated by the Multidrug resistance pump 1 (Mdr1), a membrane transporter belonging to the major facilitator family. However, Mdr1-mediated fluconazole drug resistance is caused by the pump's regulator, the transcription factor Mrr1 (Multidrug resistance regulator 1). It was shown that Mrr1 is hyperactive without stimulation or further activation in resistant strains which is due to so called gain of function mutations in the MRR1 gene. To understand the mechanism that lays behind this constitutive activity of Mrr1, the transcription factor should be structurally and functionally (in vitro) characterized which could provide a basis for successful drug development to target Mdr1-mediated drug resistance caused by Mrr1. Therefore, the entire 1108 amino acid protein was successfully expressed in Escherichia coli. However, further purification was compromised as the protein tended to form aggregates, unsuitable for crystallization trials or further characterization experiments. Expression trials in the eukaryote Pichia pastoris neither yielded full length nor truncated Mrr1 protein. In order to overcome the aggregation problem, a shortened variant, missing the N-terminal 249 amino acids named Mrr1 '250', was successfully expressed in E. coli and could be purified without aggregation. Similar to the wild type Mrr1 '250', selected gain of function variants were successfully cloned, expressed and purified with varying yields and with varying purity. The Mrr1 `250' construct contains most of the described regulatory domains of Mrr1. It was used for crystallization and an initial comparative analysis between the wild type protein and the variants. The proposed dimeric form of the transcription factor, necessary for DNA binding, could be verified for both, the wild type and the mutant proteins. Secondary structure analysis by circular dichroism measurements revealed no significant differences in the overall fold of the wild type and variant proteins. In vitro, the gain of function variants seem to be less stable compared to the wild type protein, as they were more prone to degradation. Whether this observation holds true for the full length protein's stability in vitro and in vivo remains to be determined. The crystallization experiments, performed with the Mrr1 '250' constructs, led to few small needle shaped or cubic crystals, which did not diffract very well and were hardly reproducible. Therefore no structural information of the transcription factor could be gained so far. Infections with M. tuberculosis, the causative agent of tuberculosis, are the leading cause of mortality among bacterial diseases. Especially long treatment times, an increasing number of resistant strains and the prevalence of for decades persisting bacteria create the necessity for new drugs against this disease. The cholesterol import and metabolism pathways were discovered as promising new targets and interestingly they seem to play an important role for the chronic stage of the tuberculosis infection and for persisting bacteria. In this thesis, the 3-ketoacyl-CoA thiolase FadA5 from M. tuberculosis was characterized and the potential for specifically targeting this enzyme was investigated. FadA5 catalyzes the last step of the β-oxidation reaction in the side-chain degradation pathway of cholesterol. We solved the three dimensional structure of this enzyme by X-ray crystallography and obtained two different apo structures and three structures in complex with acetyl-CoA, CoA and a hydrolyzed steroid-CoA, which is the natural product of FadA5. Analysis of the FadA5 apo structures revealed a typical thiolase fold as it is common for biosynthetic and degradative enzymes of this class for one of the structures. The second apo structure showed deviations from the typical thiolase fold. All obtained structures show the enzyme as a dimer, which is consistent with the observed dimer formation in solution. Thus the dimer is likely to be the catalytically active form of the enzyme. Besides the characteristic structural fold, the catalytic triad, comprising two cysteines and one histidine, as well as the typical coenzyme A binding site of enzymes belonging to the thiolase class could be identified. The two obtained apo structures differed significantly from each other. One apo structure is in agreement with the characteristic thiolase fold and the well-known dimer interface could be identified in our structure. The same characteristics were observed in all complex structures. In contrast, the second apo structure followed the thiolase fold only partially. One subdomain, spanning 30 amino acids, was in a different orientation. This reorientation was caused by the formation of two disulfide bonds, including the active site cysteines, which rendered the enzyme inactive. The disulfide bonds together with the resulting domain swap still permitted dimer formation, yet with a significantly shifted dimer interface. The comparison of the apo structures together with the preliminary activity analysis performed by our collaborator suggest, that FadA5 can be inactivated by oxidation and reactivated by reduction. If this redox switch is of biological importance requires further evaluation, however, this would be the first reported example of a bacterial thiolase employing redox regulation. Our obtained complex structures represent different stages of the thiolase reaction cycle. In some complex structures, FadA5 was found to be acetylated at the catalytic cysteine and it was in complex with acetyl-CoA or CoA. These structures, together with the FadA5 structure in complex with a hydrolyzed steroid-CoA, revealed important insights into enzyme dynamics upon ligand binding and release. The steroid-bound structure is as yet a unique example of a thiolase enzyme interacting with a complex ligand. The characterized enzyme was used as platform for modeling studies and for comparison with human thiolases. These studies permitted initial conclusions regarding the specific targetability of FadA5 as a drug target against M. tuberculosis infection, taking the closely related human enzymes into account. Additional analyses led to the proposal of a specific lead compound based on the steroid and ligand interactions within the active site of FadA5.}, subject = {Multidrug-Resistenz}, language = {en} } @phdthesis{Horn2014, author = {Horn, Anne}, title = {Die Wirkung von Dopamin und Faktoren der dopaminergen Neurotransmission auf HIV-Infektion und Immunaktivierung: Fokus auf Dopamin-assoziierte Gene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107639}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {HIV verursacht eine progressive Zerst{\"o}rung des Immunsystems und f{\"u}hrt zus{\"a}tzlich durch Ver{\"a}nderungen im ZNS zu neurokognitiven St{\"o}rungen (HIV-associated neurocognitive disorders, HAND). Die HIV-Infektion geht mit einer Dysfunktion von dopaminergen Signalwegen einher, die sich unter anderem in einer erh{\"o}hten Dopamin-Verf{\"u}gbarkeit im Liquor von Therapie-naiven HIV-Patienten {\"a}ußert. Der Grund f{\"u}r die Dysregulation der dopaminergen Signalwege in HIV-Patienten ist nicht gekl{\"a}rt. Aufgrund dessen war das Hauptziel dieser Arbeit die Identifizierung des pathogenetischen Mechanismus, der zu einer erh{\"o}hten Dopamin-Konzentration im Liquor von HIV-Patienten f{\"u}hrt. Die prim{\"a}re Hypothese war, dass die erh{\"o}hte Dopamin-Verf{\"u}gbarkeit nicht durch das Virus selbst, sondern vielmehr durch die genetische Konstitution der HIV-Patienten hervorgerufen wird. Deshalb wurden Polymorphismen untersucht, die die dopaminerge Neurotransmission beeinflussen. Es wurde vermutet, dass a) verschiedene Genotypen dieser Polymorphismen in nicht-infizierten und HIV-infizierten Personen mit anderen H{\"a}ufigkeiten auftreten, b) verschiedene Genotypen mit ver{\"a}nderten Dopamin-Verf{\"u}gbarkeiten assoziiert sind, c) unterschiedliche Genotypen Auswirkungen auf Marker der Progression der HIV-Infektion haben und d) verschiedene Genotypen die Immunaktivierung beeinflussen. Dazu wurden in 190 HIV-infizierten und nicht-infizierten Teilnehmern unterschiedlicher Ethnien die Polymorphismen BDNF Val66Met, COMT Val108/158Met, DAT 3'-UTR VNTR, DRD2 TaqIα, DRD3 Ser9Gly und DRD4 VNRT mit PCR, ggf. Restriktionsverdau und Agarose-Gelelektrophorese analysiert und die Expression des Dopamin-Transporters mit real time PCR bestimmt. Dar{\"u}ber hinaus wurden zur weiteren klinischen Charakterisierung die Immunmarker MCP-1, sCD14, suPAR und RANTES mit ELISA analysiert, da eine Erh{\"o}hung dieser Parameter mit einer beschleunigten HIV-Progression assoziiert ist. Die Bestimmung der T-Zell-Aktivierung (CD3/CD8/CD38/HLA-DR) wurde mit einer durchflusszytometrischen Analyse durchgef{\"u}hrt. In dieser Arbeit haben wir gezeigt, dass HIV-Patienten hochsignifikant h{\"a}ufiger homozygot f{\"u}r das 10-repeat Allel des Dopamin-Transporter-Polymorphismus sind als nicht-infizierte Personen (57,1 \% bzw. 26,8 \%, p = 0,001, OR = 3,93, 95 \% CI 1,72 - 8,96, direkte logistische Regression). HIV-Patienten und nicht-infizierte Personen mit diesem Genotyp weisen eine signifikant h{\"o}here Dopamin-Verf{\"u}gbarkeit im Liquor auf als Personen mit dem 9/10-Genotyp (p = 0,03) und eine signifikant geringere Expression des Dopamin-Transporters auf PBMCs (p = 0,05). Der DAT 10/10-Genotyp ist im Gegensatz zu anderen Genotypen in HIV-Patienten jedoch weder mit unterschiedlichen CD4+-Zellzahlen und Viruslasten noch mit einer ver{\"a}nderten H{\"a}ufigkeit von HAND verbunden. Zus{\"a}tzlich weisen deutsche und s{\"u}dafrikanische nicht-infizierte und HIV-infizierte Personen mit dem DAT 10/10-Genotyp eine signifikant h{\"o}here MCP-1-Konzentration im Plasma auf als Personen mit anderen DAT-Genotypen (p = 0,0076). Keiner der Immunmarker ist mit der Dopamin-Verf{\"u}gbarkeit assoziiert. Dennoch ist die Immunaktivierung in s{\"u}dafrikanischen HIV-Patienten im Vergleich zu nicht-infizierten S{\"u}dafrikanern signifikant erh{\"o}ht: HIV-Patienten zeigen im Vergleich zu nicht-infizierten Personen eine st{\"a}rkere T-Zell-Aktivierung (p = 0,0001), eine erh{\"o}hte Plasma-Konzentration von MCP-1 (p = 0,0014), eine gesteigerte sCD14-Konzentration (p = 0,0004) und eine vermehrte suPAR-Konzentration im Plasma (p = 0,006). In der vorliegenden Arbeit konnte kein Nachweis erbracht werden, dass die erh{\"o}hte Immunaktivierung in den s{\"u}dafrikanischen HIV-Patienten durch die Koinfektion mit Echinoccocus oder durch genetische Polymorphismen bei Chemokinen hervorgerufen wird. Eine chronisch erh{\"o}hte Immunaktivierung stellt eine treibende Kraft f{\"u}r die Virusreplikation dar und kann letztendlich zu einer Ersch{\"o}pfung des Immunsystems f{\"u}hren. Der 10/10-Genotyp des DAT VNTR k{\"o}nnte einen Risiko-Faktor f{\"u}r die HIV-Infektion darstellen, da dieser eine erh{\"o}hte Dopamin-Verf{\"u}gbarkeit nach sich zieht. Dopamin aktiviert HIV in chronisch infizierten T-Lymphoblasten und f{\"u}hrt zudem zu einer erh{\"o}hten Expression und Sezernierung von TNF-α, das wiederum die Expression von HIV induziert. Diese Ergebnisse untermauern den Zusammenhang von Dopamin und HIV. Es ist jedoch nicht v{\"o}llig gekl{\"a}rt, ob die erh{\"o}hte Dopamin-Konzentration ausschließlich durch den Genotyp hervorgerufen oder auch durch die HIV-Infektion beg{\"u}nstigt wird.}, subject = {Dopamin}, language = {de} } @phdthesis{Bartlang2014, author = {Bartlang, Manuela Slavica}, title = {Timing is everything: The interaction of psychosocial stress and the circadian clock in male C57BL/6 mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106486}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Due to the rotation of the earth in the solar system all inhabitants of our planet are exposed to regular environmental changes since more than 3.5 billion years. In order to anticipate these predictable changes in the environment, evolutionarily conserved biological rhythms have evolved in most organisms - ranging from ancient cyanobacteria up to human beings - and also at different levels of organization - from single cells up to behavior. These rhythms are endogenously generated by so called circadian clocks in our body and entrained to the 24 h cycle by external timing cues. In multi-cellular organisms the majority of the cells in the body is equipped with such an oscillator. In mammals, the circadian system is structured in a hierarchical fashion: A central pacemaker resides in the bilateral suprachiasmatic nucleus (SCN) of the hypothalamus, while subsidiary peripheral clocks exist in nearly every tissue and organ. In contrast to the aforementioned recurrent environmental changes most organisms are also exposed to unpredictable changes in the environment. In order to adapt to these sudden alterations the acute activation of the stress response system, involving the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system, displays a fundamental survival mechanism. However, if activation of the stress system becomes chronic, devastating somatic and affective disorders might be the consequence. At first glance, the circadian and the stress system seem to represent two separate bodily control systems that are involved in adaptation to predictable and unpredictable stimuli, respectively. However, both systems are fundamental for survival, and thus, communicate with each other at various levels. Early studies already demonstrated that stressor exposure at different times of the diurnal cycle generates different stress effects, whereupon the type of stressor plays a pivotal role. Moreover, alterations in the SCN and peripheral circadian clocks could be shown following stressor exposure. In cooperation with various co-workers, I investigated whether the stress responsiveness is modulated by the endogenous clock in a diurnal fashion and whether repeated psychosocial stress impacts the circadian clock depending on the time of day of stressor exposure. Therefore, male C57BL/6 mice were repeatedly exposed to a psychosocial stressor, either at the beginning of the inactive/light phase (SDL mice) or active/dark phase (SDD mice). Subsequently, different behavioral, physiological/endocrine and immunological/ inflammatory consequences were assessed. It could be shown that the effects of repeated psychosocial stressor exposure strongly depend on the time of day of stressor exposure. The present results demonstrate that repeated daily stressor exposure has a more negative outcome when applied during the active/dark phase compared to the inactive/light phase. Stressor exposure during the active phase resulted in a loss of general activity, decreased interest in an unfamiliar conspecific, a shift towards a more pro-inflammatory body milieu, and rhythm disturbances in plasma hormones, all representing well-accepted hallmarks of depression. In contrast, C57BL/6 mice exposed to the stressor in their inactive phase exhibited minor physiological alterations that might prevent the formation of the maladaptive consequences mentioned above, thus representing beneficial adaptations. The second focus of this thesis was put on the investigation of the effects of repeated psychosocial stressor exposure at different times of the light-dark cycle on various levels of the circadian system. An increased expression of the PERIOD2 (PER2) protein, which represents an essential core clock component, could be found in the SCN of mice repeatedly exposed to the stressor during their active phase. In consistence with the alterations in the central circadian pacemaker, the daily rhythm of different hormones and the activity rhythm were considerably affected by SDD. Mice exposed to the psychosocial stressor in their active phase showed a shifted, or absent, rhythm of the hormones corticosterone and leptin. Moreover, their activity was found to be phase-delayed, which seems to be attributable to the Period (Per) gene since Per1/Per2 double-mutants still exhibited their normal activity rhythm following 19 days of stressor exposure during the active phase. In contrast, a phase-advance in the peripheral adrenal gland clock could be seen in C57BL/6 mice subjected to the stressor during their inactive phase. This phase-shift might be required for maintaining the normal rhythmicity in hormonal release and activity. It has previously been suggested that activation of the HPA axis upon stressor exposure at different times of the light-dark cycle is depending on whether the stressor is of physical or psychological nature. Data from the HPA axis analysis now refine previous findings, indicating that psychosocial stressors also modulate HPA axis responses based on the time of day of stressor presentation. The present results demonstrate that HPA axis activity was reduced following repeated stressor exposure during the active phase. It is reasonable to speculate that this reduced basal activity of the stress system represents a failure in HPA axis adjustment, which could contribute to the negative consequences of repeated psychosocial stressor exposure during the dark phase. Taken together, it can be concluded that the endogenous clock in mice modulates the stress responsiveness in a circadian fashion and that repeated psychosocial stressor exposure affects the biological clock depending on the time of day of stressor presentation. Thereby, stressor exposure during the active phase results in a more negative outcome as compared to stressor experience during the inactive phase. It is assumed that the interaction between the circadian clock and the stress system is a complex issue that might ensure that the endogenous clock does not get out of synchrony in any order.}, subject = {Maus}, language = {en} } @phdthesis{Seifried2014, author = {Seifried, Annegrit}, title = {Mechanistic insights into specificity determinants and catalytic properties of the haloacid dehalogenase-type phosphatase AUM}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101009}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Mammalian haloacid dehalogenase (HAD)-type phosphatases are an emerging family of enzymes with important functions in physiology and disease. HAD phosphatases can target diverse metabolites, lipids, DNA, and serine/threonine or tyrosine phosphorylated proteins with often high specificity (Seifried et al., 2013). These enzymes thus markedly enlarge the repertoire and substrate spectrum of mammalian phosphatases. However, the basis of HAD phosphatase substrate specificity is still elusive and a number of mammalian HAD phosphatases remain uncharacterized to date. This study characterizes the biochemical and structural properties of AUM (aspartate-based, ubiquitous, Mg2+-dependent phosphatase), a previously unexplored mammalian HAD phosphatase. In vitro phosphatase assays of purified, recombinant AUM showed phosphatase activity towards para-nitrophenyl phosphate and adenine and guanine nucleotide di- and triphosphates. Inhibitor studies indicated that similar to other HAD superfamily members, the AUM-catalyzed dephosphorylation reaction proceeds via a pentacovalent phosphoaspartate intermediate. In line with an aspartate-based catalytic mechanism, AUM was insensitive to inhibitors of serine/threonine phosphatases. The characterization of the purified recombinant murine enzyme also revealed that AUM exists in equilibrium between dimers and tetramers. AUM was identified as the closest, yet functionally distinct relative of chronophin, a pyridoxal 5'-phosphate and serine/threonine-directed phosphatase. Phylogenetic analyses showed that AUM and chronophin evolved via duplication of an ancestral gene at the origin of the vertebrates. In contrast to chronophin, AUM acts as a tyrosine-specific HAD-type phosphatase in vitro and in cells. To elucidate how AUM and chronophin achieve these distinct substrate preferences, comparative evolutionary analyses, biochemical approaches and structural analyses were combined. Swapping experiments of less homologous regions between AUM and chronophin were performed. The mutational analysis revealed residues important for AUM catalysis and specificity. A single differently conserved residue in the cap domain of AUM or chronophin is crucial for phosphatase specificity (AUML204, chronophinH182). The X-ray crystal structure of the AUM cap fused to the catalytic core of chronophin (CAC, PDB: 4BKM) was solved to 2.65 {\AA} resolution. It presents the first crystal structure of the murine AUM capping domain. The detailed view of the catalytic clefts of AUM and chronophin reveals the structural basis of the divergent substrate specificities. These presented findings provide insights into the design principles of capped HAD phosphatases and show that their substrate specificity can be encoded by a small number of predictable residues. In addition, the catalytic properties of AUM were investigated, identifying a mechanism of reversible oxidation regulating the activity of AUM in vitro. AUM phosphatase activity is inhibited by oxidation and can be recovered by reduction. The underlying molecular mechanism was revealed by mutational analyses. The cysteines C35, C104 and C243, located in the AUM core domain, are responsible for the inhibition of AUM by oxidation. C293 mediates the redox-dependent tetramerization of AUM in vitro. Based on the chronophin and CAC structure, a direct impact of the oxidation of C35 on the nucleophile D34 is proposed. In addition, a redox-dependent disulfide bridge (C104, C243), connecting the core and cap domain of AUM may be important for an open/close-mechanism. This hypothesis is supported by CD spectroscopy experiments that demonstrate a structural change in AUM upon reduction. These data present the first evidence for the regulation of AUM catalysis by reversible oxidation. This finding is so far unique in the field of HAD phosphatases. In this context, the first cell-based AUM activity assay was developed. For this, the artificial substrate pNPP was combined with the reducing agent DTT to create a specific AUM activity readout. This fractionation-based assay is the first tool to differentiate between cell lines or tissues with different AUM concentrations or activities. Taken together, the presented biochemical characterization reveals the specificity determinants and catalytic properties of AUM. General insights into structural determinants of mammalian HAD phosphatase substrate recognition are provided and reversible oxidation as possible regulatory mechanism for AUM is proposed. These findings constitute a framework for further functional analyses to elucidate the biomedical importance of AUM.}, subject = {Proteintyrosinphosphatase}, language = {en} } @phdthesis{Sander2014, author = {Sander, Bodo}, title = {Structural and biochemical characterization of gephyrin and various gephyrin-ligand complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104212}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Efficient synaptic neurotransmission requires the exact apposition of presynaptic terminals and matching neurotransmitter receptor clusters on the postsynaptic side. The receptors are embedded in the postsynaptic density, which also contains scaffolding and regulatory proteins that ensure high local receptor concentrations. At inhibitory synapses the cytosolic scaffolding protein gephyrin assumes an essential organizing role within the postsynaptic density by the formation of self-oligomers which provide a high density of binding sites for certain -amino butyric acid type A (GABAA) and the large majority of glycine receptors (GlyR). Gephyrin contains two oligomerization domains: In isolation, the 20 kDa N-terminal G domain (GephG) and the 46 kDa E domain (GephE) trimerize and dimerize, respectively. In the full-length protein the domains are interconnected by a central ~150 amino acid linker, and only GephG trimerization is utilized, whereas GephE dimerization is prevented, thus suggesting the need for a trigger to release GephE autoinhibition, which would pave the way for the formation of higher oligomers and for efficient receptor clustering. The structural basis for this GephE autoinhibition has remained elusive so far, but the linker was reported to be sufficient for autoinhibition. This work dealt with the biochemical and structural characterization of apo-gephyrin and gephyrin in complexes with ligands which are known to promote the formation of synaptic gephyrin clusters (collybistin and neuroligin 2) and reorganize them (dynein light chain 1). For full-length gephyrin no structural information has been available so far. Atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS) analyses described in this thesis disclosed that the gephyrin trimer forms a highly flexible assembly, which, due to the long linker, can switch between compact and extended conformational states in solution, with a preference for compact states. This partial compaction and potentially GephE autoinhibition are achieved by interactions of parts of the linker with the G and E domains, as suggested by circular dichroism spectroscopy. However, the linker on its own cannot account for GephE blockage, as size exclusion chromatography experiments coupled with multi angle light scattering detection (SEC-MALS) and SAXS analyses revealed that a gephyrin variant only encompassing the linker and GephE (GephLE) forms dimers and not monomers as suggested by an earlier study. The oligomeric state of GephLE and the observation that several gephyrin variants, in which linker segments of varying length were deleted, predominantly formed trimers, suggested the presence of a linker independent mechanism of GephE dimerization blockade. Taken together, the data indicated that linker-dependent and linker-independent mechanisms mediate gephyrin autoinhibition. In the second project gephyrin's interaction with DYNLL1 (Dynein LC8 Light Chain 1) was characterized. DYNLL1 is a 25 kDa dimer incorporated into the dynein motor and provides two binding sites, each of which can accommodate an octapeptide derived from gephyrin's linker region (referred to as GephDB). Originally, DYNLL1 was regarded as a cargo adaptor, linking gephyrin-GlyR complexes to the dynein motor, thus driving their retrograde transport and leading to a decrease of synaptic gephyrin-GlyR complexes. Building on these studies, this thesis assessed the cargo hypothesis as well as the so far unclear stoichiometry of the gephyrin-DYNLL1 complex. The cargo scenario would require ternary complex formation between gephyrin, DYNLL1 and the dynein intermediate chain (DIC) of the dynein motor. However, such a complex could not be detected by analytical size exclusion chromatography (aSEC) experiments - presumably because gephyrin and DIC competed for a common binding site in DYNLL1. This finding was consistent with a single DYNLL1 dimer capturing two linker segments of a single gephyrin trimer as suggested by a 26 kDa mass increase of the gephyrin species in the presence of DYNLL1 in SEC-MALS experiments. aSEC experiments at even higher concentrations (~20 µM gephyrin and ~80 µM DYNLL1) indicated that the affinity of GephDB was significantly impaired in the context of full-length gephyrin but also in a variant that bears only GephG and the first 39 residues of the linker (GephGL220). Presumably due to avidity effects two linkers stably associated with a single DYNLL1 dimer, whereas the third DYNLL1 binding motif remained predominantly unoccupied unless high concentrations of GephGL220 (50 µM) and DYNLL1 (200 µM) were used. These findings indicate that an interplay between GephG and the N-terminal linker segment mediates the attenuation of GephDB affinity towards DYNLL1 and that preventing DYNLL1 from the induction of higher gephyrin oligomers is either advantageous for DYNLL1-mediated reorganization of gephyrin-GlyR clusters or that DYNLL1 exerts possibly two (concentration-dependent) actions on gephyrin. The gephyrin-collybistin-neuroligin 2 complex was the subject of the third project. Previously, collybistin and gephyrin were observed to mutually trigger their translocation to the postsynaptic membrane, where the disordered cytoplasmic tail of the postsynaptic cell adhesion molecule NL2 (NL2cyt) causes the anchoring of collybistin 2 (CB2) by binding to its SH3 domain, thereby releasing SH3 domain mediated autoinhibiton of CB2 binding to the membrane phospholipid phosphatidylinositol-3-phosphate. Critical for this event is the binding of gephyrin to both CB2 and NL2, presumably via GephE. Following up on these previous studies biochemical data presented in this thesis confirm the formation of the ternary complex. Unexpectedly, analyses by means of native polyacrylamide gel electrophoresis pointed to: (1) The existence of a complex containing NL2cyt and CB2 lacking the SH3 domain and consequently an additional NL2 binding site in CB2. (2) Attenuated gephyrin-collybistin complex formation in the presence of the SH3 domain. (3) A requirement for high NL2cyt concentrations (> 30 µM) during the formation of the ternary complex. This might allow for the regulation by other factors such as additional binding partners or posttranslational modifications. Although of preliminary character, these results provide a starting point for future studies, which will hopefully elucidate the interplay between gephyrin, collybistin, NL2 and certain GABAA receptors.}, subject = {Gephyrin}, language = {en} } @phdthesis{Rohleder2014, author = {Rohleder, Florian}, title = {The Intricate Network of Replication-dependent Interstrand Crosslink DNA Repair}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113121}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The Fanconi anemia (FA) pathway is a replication-dependent DNA repair mechanism which is essential for the removal of interstrand crosslink (ICL) DNA damages in higher eukaryotes (Moldovan and D'Andrea, 2009). Malfunctions in this highly regulated repair network lead to genome instability (Deans and West, 2011). Pathological phenotypes of the disease FA which is caused by mutations in the eponymous pathway are very heterogeneous, involving congenital abnormalities, bone-marrow failure, cancer predisposition and infertility (Auerbach, 2009). The FA pathway comprises a complex interaction network and to date 16 FA complementation groups and associated factors have been identified (Kottemann and Smogorzewska, 2013). Additionally, components of nucleotide excision repair (NER), homologous recombination repair (HRR), and translesion synthesis (TLS) are involved and coordinated by the FA proteins (Niedzwiedz et al., 2004; Knipscheer et al., 2009). One of the FA proteins is the DEAH helicase FANCM. In complex with its binding partners FAAP24 and MHF1/2 it binds the stalled replication fork and activates the FA damage response (Wang et al., 2013). However, the exact steps towards removal of the ICL damage still remain elusive. To decipher the underlying process of FA initiation by FANCM, this thesis mainly focuses on the archaeal FANCM homolog helicase-associated endonuclease for fork-structured DNA (Hef). Hef from the archaeal organism Thermoplasma acidophilum (taHef) differs from other archaeal Hef proteins and exclusively comprises an N-terminal helicase entity with two RecA and a thumb-like domain while others additionally contain a nuclease portion at the C-terminus. I solved the crystal structure of full-length taHef at a resolution of 2.43 {\AA}. In contrast to the crystal structure of the helicase domain of Hef from Pyrococcus furiosus (pfHef), taHef exhibits an extremely open conformation (Nishino et al., 2005b) which implies that a domain movement of the RecA-like helicase motor domains of 61° is possible thus highlighting the flexibility of helicases which is required to translocate along the DNA. However, small-angle x-ray scattering (SAXS) measurements confirm an intermediate conformation of taHef in solution indicating that both crystal structures represent rather edge states. Most importantly, proliferating cell nuclear antigen (PCNA) was identified as an interaction partner of Hef. This interaction is mediated by a highly conserved canonical PCNA interacting peptide (PIP) motif. Intriguingly, the presence of PCNA does not alter the ATPase nor the helicase activity of taHef, thus suggesting that the interaction is entirely dedicated to recruit taHef to the replication fork to fulfill its function. Due to a high level of flexibility the taHef-taPCNA complex could not be crystallized and therefore SAXS was utilized to determine a low-resolution model of this quaternary structure. This newly discovered PCNA interaction could also be validated for the eukaryotic FANCM homolog Mph1 from the thermophilic fungus Chaetomium thermophilum (ctMph1). As the first step towards the characterization of this interaction I solved the crystal structure of PCNA from Chaetomium thermophilum (ctPCNA). Furthermore, it was possible to achieve preliminary results on the putative interaction between the human proteins FANCM and PCNA (hsFANCM, hsPCNA). In collaboration with Detlev Schindler (Human Genetics, W{\"u}rzburg) and Weidong Wang (National Institute on Aging, Baltimore, USA) co-immunoprecipitation (CoIP) experiments were performed using hsFANCM and hsPCNA expressed in HEK293 cells. Although an interaction was reproducibly observed in hydroxyurea stimulated cells further experiments and optimization procedures are required and ongoing.}, subject = {DNS-Reparatur}, language = {en} }