@phdthesis{Stepanenko2008, author = {Stepanenko, Vladimir}, title = {Self-Assembly of Bay-Substituted Perylene Bisimide by Ligand-Metal Ion Coordination}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32063}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The subject of this thesis is the synthesis and characterization of PBI-based fluorescent metallosupramolecular polymers and cyclic arrays. Terpyridine receptor functionalized PBIs of predesigned geometry have been used as building blocks to construct desired macromolecular structures through metal-ion-directed self-assembly. These metallosupramolecular architectures have been investigated by NMR, UV/Vis and fluorescence spectroscopy, mass spectrometry, and atomic force microscopy.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Pawlik2013, author = {Pawlik, Marie-Christin}, title = {Gene expression in the human pathogen Neisseria meningitidis: Adaptation to serum exposure and zinc limitation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Neisseria meningitidis is a facultative human pathogen that occasionally shows strong resistance against serum complement exposure. Previously described factors that mediate meningococcal serum resistance are for example the capsule, LPS sialylation, and expression of the factor H binding protein. I aimed for identification of novel serum resistance factors, thereby following two approaches, i) the analysis of the impact of global regulators of gene expression on serum resistance; and ii) a comparative analysis of closely related strains differing in serum resistance. (i) Of six meningococcal global regulators of gene expression studied, only mutation of the zinc uptake regulator Zur reduced complement deposition on meningococci. Little was known about meningococcal Zur and regulatory processes in response to zinc. I therefore elucidated the yet unidentified meningococcal Zur regulon comparing the transcriptional response of the N. meningitidis strain MC58 under zinc-rich and zinc-deficient conditions using a common reference design of microarray analysis. The meningococcal Zur regulon comprises 17 genes, of which 15 genes were repressed and two genes were activated at high zinc condition. Amongst the Zur-repressed genes were genes involved in zinc uptake, tRNA modification, and ribosomal assembly. A 23 bp meningococcal consensus Zur binding motif (Zur box) with a conserved central palindrome was established (TGTTATDNHATAACA) and detected in the promoter region of all regulated transcriptional units (genes/operons). In vitro binding of meningococcal Zur to the Zur box of three selected genes was shown for the first time using EMSAs. Binding of meningococcal Zur to DNA depended specifically on zinc, and mutations in the palindromic sequence constrained Zur binding to the DNA motif. ii) Three closely related strains of ST-41/44 cc from invasive disease and carriage which differed in their resistance to serum complement exposure were analysed to identify novel mediators of serum resistance. I compared the strains' gene content by microarray analysis which revealed six genes being present in both carrier isolates, but absent in the invasive isolate. Four of them are part of two Islands of horizontally transferred DNA, i.e. IHT-B and -C. The working group furthermore applied a comprehensive screening assay, a transcriptome and a proteome analysis leading to identification of three target proteins. I contributed to establish the role of these three proteins in serum resistance: The adhesin Opc mediates serum resistance by binding of vitronectin, a negative regulator of the complement system; the hypothetical protein NMB0865 slightly contributes to serum resistance by a yet unknown mechanism; and NspA, recently identified to bind the negative complement regulator factor H, led to considerable reduced complement-mediated killing.}, subject = {Komplement }, language = {en} } @phdthesis{Sadek2020, author = {Sadek, Alexander}, title = {Elektrochemisch gest{\"u}tzte Abscheidung kupfer- und zinkdotierter Magnesiumphosphatschichten auf Titan}, doi = {10.25972/OPUS-20916}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209166}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Zur Entwicklung von Implantaten, welche eine komplikations{\"a}rmere Einheilung aufweisen, wurde eine d{\"u}nne, homogene Beschichtung von Titanprobenk{\"o}rpern mit Struvit mithilfe elektrochemischer Abscheidung generiert. Hierbei wurden dem Basiselektrolyt in den Versuchsreihen unterschiedliche Konzentrationen an Kupfer-(II)-nitrat-3-hydrat- und/oder Zinknitrat-6-hydratl{\"o}sung hinzugef{\"u}gt. Die experimentelle Freisetzung erfolgte in drei unterschiedlichen physiologischen N{\"a}hrmedien: simulated body fluid (SBF), fetal calf serum (FCS) und Dulbecco's Modified Eagle Medium (DMEM). Es konnte gezeigt werden, dass eine antibakteriell wirkende Menge an Kupfer- und Zinkionen freigesetzt wurde. Zusammenfassend stellt die elektrochemische Abscheidung von mit Kupfer- und Zink-dotierten Struvit auf Titanoberfl{\"a}chen einen vielversprechenden Ansatz in der Implantologie hinsichtlich der Einheilzeit im Knochen sowie der Risikominimierung des Verlustes dar.}, subject = {Struvit}, language = {de} } @phdthesis{Wagner2020, author = {Wagner, Leonard}, title = {Zinc homeostasis in megakaryocytes}, doi = {10.25972/OPUS-21452}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214526}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Zinc is an essential trace element for all living organisms. In mammals, including humans and mice, it is required for normal growth, development, hematopoiesis and immune defense. This thesis investigates the influence of zinc on the development of megakaryocytes (MKs), the cells responsible for bone marrow-derived platelet production. Furthermore, a detailed analysis of the expression of zinc import and export transporters (Slc39a/Slc30a genes) is carried out, firstly over the course of MK differentiation and secondly dependent on extracellular zinc.}, subject = {Zink}, language = {en} }