@article{WalterCollenburgJaptoketal.2016, author = {Walter, T. and Collenburg, L. and Japtok, L. and Kleuser, B. and Schneider-Schaulies, S. and M{\"u}ller, N. and Becam, J. and Schubert-Unkmeir, A. and Kong, J. N. and Bieberich, E. and Seibel, J.}, title = {Incorporation and visualization of azido-functionalized N-oleoyl serinol in Jurkat cells, mouse brain astrocytes, 3T3 fibroblasts and human brain microvascular endothelial cells}, series = {Chemical Communications}, volume = {52}, journal = {Chemical Communications}, number = {55}, doi = {10.1039/c6cc02879a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191263}, pages = {8612-8614}, year = {2016}, abstract = {The synthesis and biological evaluation of azido-N-oleoyl serinol is reported. It mimicks biofunctional lipid ceramides and has shown to be capable of click reactions for cell membrane imaging in Jurkat and human brain microvascular endothelial cells.}, language = {en} } @article{DoranFuldeGratzetal.2016, author = {Doran, Kelly S. and Fulde, Marcus and Gratz, Nina and Kim, Brandon J. and Nau, Roland and Prasadarao, Nemani and Schubert-Unkmeir, Alexandra and Tuomanen, Elaine I. and Valentin-Weigand, Peter}, title = {Host-pathogen interactions in bacterial meningitis}, series = {Acta Neuropathologica}, volume = {131}, journal = {Acta Neuropathologica}, number = {2}, doi = {10.1007/s00401-015-1531-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191034}, pages = {185-209}, year = {2016}, abstract = {Bacterial meningitis is a devastating disease occurring worldwide with up to half of the survivors left with permanent neurological sequelae. Due to intrinsic properties of the meningeal pathogens and the host responses they induce, infection can cause relatively specific lesions and clinical syndromes that result from interference with the function of the affected nervous system tissue. Pathogenesis is based on complex host-pathogen interactions, some of which are specific for certain bacteria, whereas others are shared among different pathogens. In this review, we summarize the recent progress made in understanding the molecular and cellular events involved in these interactions. We focus on selected major pathogens, Streptococcus pneumonia, S. agalactiae (Group B Streptococcus), Neisseria meningitidis, and Escherichia coli K1, and also include a neglected zoonotic pathogen, Streptococcus suis. These neuroinvasive pathogens represent common themes of host-pathogen interactions, such as colonization and invasion of mucosal barriers, survival in the blood stream, entry into the central nervous system by translocation of the blood-brain and blood-cerebrospinal fluid barrier, and induction of meningeal inflammation, affecting pia mater, the arachnoid and subarachnoid spaces.}, language = {en} } @article{LuberLutzAbeleHornetal.2019, author = {Luber, Verena and Lutz, Mathias and Abele-Horn, Marianne and Einsele, Hermann and Grigoleit, G{\"o}tz Ulrich and Mielke, Stephan}, title = {Excretion of Ascaris lumbricoides following reduced-intensity allogeneic hematopoietic stem cell transplantation and consecutive treatment with mebendazole}, series = {Transplant Infectious Disease}, volume = {22}, journal = {Transplant Infectious Disease}, number = {1}, issn = {1399-3062}, doi = {10.1111/tid.13224}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219608}, pages = {1-4}, year = {2019}, abstract = {Here, we present the unique case of a 51-year-old German patient with multiple myeloma excreting Ascaris lumbricoides in his stool five weeks after allogeneic hematopoietic stem cell transplantation. Stool analysis remained negative for the presence of eggs, and there was no eosinophilia in the peripheral blood at any time around stem cell transplantation. The patient was commenced on a three-day treatment with mebendazole, which was well tolerated. No serious interactions with the concomitant post-transplant medication or negative effects on the hematopoiesis were observed, and the myeloma still is in complete remission. To our knowledge, this is the first report on excretion of A lumbricoides in the context of allogeneic stem cell transplantation. The case is remarkable with view to the fact that the parasite has supposedly survived all courses of myeloma treatment including autologous and allogeneic conditioning. Parasitosis with A lumbricoides has a worldwide prevalence of about a billion and is extremely rare in northern Europe. Possibly the patient got infected during a trip to Egypt years before multiple myeloma was diagnosed.}, language = {en} } @phdthesis{Bauriedl2020, author = {Bauriedl, Saskia Corinna}, title = {The influence of riboregulation on fitness and virulence in Neisseria meningitidis}, doi = {10.25972/OPUS-19297}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192978}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Neisseria meningitidis (N. meningitidis) is a human commensal that occasionally causes life-threatening infections such as bacterial meningitis and septicemia. Despite experi-mental evidence that the expression of small non-coding RNAs (sRNAs) as well as the RNA chaperone Hfq affect meningococcal physiology, the impact of RNA-based regula-tion (riboregulation) on fitness and virulence in N. meningitidis is only poorly understood. Therefore, this study addressed these issues using a combination of high-throughput tech-nologies. A differential RNA-sequencing (dRNA-seq) approach was applied to produce a single-nucleotide resolution map of the primary transcriptome of N. meningitidis strain 8013. The dRNA-seq analysis predicted 1,625 transcriptional start sites including 65 putative sRNAs, of which 20 were further validated by northern blot analysis. By Hfq RNA im-munopreci-pitation sequencing a large Hfq-centered post-transcriptional regulatory net-work comprising 23 sRNAs and 401 potential mRNA targets was identified. Rifampicin stability assays demonstrated that Hfq binding confers enhanced stability on its associat-ed sRNAs. Based on these data, the interactions of two paralogous sRNAs and their cog-nate target mRNA prpB were validated in vivo as well as in vitro. Both sRNAs directly repress prpB encoding a methylisocitrate lyse which was previously shown to be involved in meningococcal colonization of the human nasopharynx. Besides the well-described RNA chaperone Hfq, FinO-domain proteins have recently been recognized as a widespread family of RNA-binding proteins (RBPs) with regulatory roles in diverse bacteria. They display an intriguing bandwidth of target sites, ranging from a single RNA pair as recognized by plasmid-encoded FinO to the global RNA regu-lons of enterobacterial ProQ proteins. To better understand the intrinsic targeting mode of this RBP family, in vivo targets of the minimal ProQ protein of N. meningitidis were de-termined. In vivo UV crosslinking with RNA deep sequencing (UV-CLIP) identified as-sociations of ProQ with 16 sRNAs and 166 mRNAs encoding a variety of biological functions and thus revealed ProQ as another global RBP in meningococci. It could be shown that meningococcal ProQ predominantly binds to highly structured RNA regions including DNA uptake sequences (DUS) and rho-independent transcription terminators and stabilizes many of its RNA targets as proved by rifampicin stability experiments. As expected from the large suite of ProQ-bound RNAs, proQ deletion globally affects both gene and protein expression in N. meningitidis, changing the expression levels of at least 244 mRNAs and 80 proteins. Phenotypic analyses suggested that ProQ promotes oxida-tive stress tolerance and UV damage repair capacity, both of which are required for full virulence of N. meningitidis. Together, this work uncovers the co-existence of two major post-transcriptional regulons, one governed by ProQ, the other by Hfq, in N. meningitidis. It further highlights the role of these distinct RBPs and its associated sRNAs to bacterial virulence and indicates that riboregulation is likely to contribute to the way how meningococci adapt to different host niches.}, subject = {Neisseria meningitidis}, language = {en} } @article{TahaClausLappannetal.2016, author = {Taha, Muhamed-Kheir and Claus, Heike and Lappann, Martin and Veyrier, Fr{\´e}d{\´e}ric J. and Otto, Andreas and Becher, D{\"o}rte and Deghmane, Ala-Eddine and Frosch, Matthias and Hellenbrand, Wiebke and Hong, Eva and du Ch{\^a}telet, Isabelle Parent and Prior, Karola and Harmsen, Dag and Vogel, Ulrich}, title = {Evolutionary Events Associated with an Outbreak of Meningococcal Disease in Men Who Have Sex with Men}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0154047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179870}, year = {2016}, abstract = {Meningococci spread via respiratory droplets, whereas the closely related gonococci are transmitted sexually. Several outbreaks of invasive meningococcal disease have been reported in Europe and the United States among men who have sex with men (MSM). We recently identified an outbreak of serogroup C meningococcal disease among MSM in Germany and France. In this study, genomic and proteomic techniques were used to analyze the outbreak isolates. In addition, genetically identical urethritis isolates were recovered from France and Germany and included in the analysis. Genome sequencing revealed that the isolates from the outbreak among MSM and from urethritis cases belonged to a clade within clonal complex 11. Proteome analysis showed they expressed nitrite reductase, enabling anaerobic growth as previously described for gonococci. Invasive isolates from MSM, but not urethritis isolates, further expressed functional human factor H binding protein associated with enhanced survival in a newly developed transgenic mouse model expressing human factor H, a complement regulatory protein. In conclusion, our data suggest that urethritis and outbreak isolates followed a joint adaptation route including adaption to the urogenital tract.}, language = {en} } @article{SpringerWaltherRickertsetal.2019, author = {Springer, Jan and Walther, Grit and Rickerts, Volker and Hamprecht, Axel and Willinger, Birgit and Teschner, Daniel and Einsele, Hermann and Kurzai, Oliver and Loeffler, Juergen}, title = {Detection of Fusarium Species in Clinical Specimens by Probe-Based Real-Time PCR}, series = {Journal of Fungi}, volume = {5}, journal = {Journal of Fungi}, number = {4}, issn = {2309-608X}, doi = {10.3390/jof5040105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193111}, pages = {105}, year = {2019}, abstract = {The mold Fusarium is a ubiquitous fungus causing plant, animal and human infections. In humans, Fusarium spp. are the major cause of eye infections in patients wearing contact lenses or after local trauma. Systemic infections by Fusarium spp. mainly occur in immunosuppressed patients and can disseminate throughout the human body. Due to high levels of resistance to antifungals a fast identification of the causative agent is an urgent need. By using a probe-based real-time PCR assay specific for the genus Fusarium we analysed several different clinical specimens detecting Fusarium spp. commonly found in clinical samples in Germany. Also, a large collection of lung fluid samples of haematological patients was analysed (n = 243). In these, two samples (0.8\%) were reproducibly positive, but only one could be confirmed by sequencing. For this case of probable invasive fungal disease (IFD) culture was positive for Fusarium species. Here we describe a rapid, probe-based real-time PCR assay to specifically detect DNA from a broad range of Fusarium species and its application to clinically relevant specimens.}, language = {en} } @misc{TortMitrevaBrehmetal.2020, author = {Tort, Jose F. and Mitreva, Makedonka and Brehm, Klaus R. and Rinaldi, Gabriel}, title = {Editorial: Novel Frontiers in Helminth Genomics}, series = {Frontiers in Genetics}, volume = {11}, journal = {Frontiers in Genetics}, number = {791}, issn = {1664-8021}, doi = {10.3389/fgene.2020.00791}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210209}, year = {2020}, abstract = {No abstract available.}, language = {en} } @article{PrausseLehnertTimmeetal.2018, author = {Prauße, Maria T. E. and Lehnert, Teresa and Timme, Sandra and H{\"u}nniger, Kerstin and Leonhardt, Ines and Kurzai, Oliver and Figge, Marc Thilo}, title = {Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {560}, issn = {1664-3224}, doi = {10.3389/fimmu.2018.00560}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197493}, year = {2018}, abstract = {Bloodstream infections by the human-pathogenic fungi Candida albicans and Candida glabrata increasingly occur in hospitalized patients and are associated with high mortality rates. The early immune response against these fungi in human blood comprises a concerted action of humoral and cellular components of the innate immune system. Upon entering the blood, the majority of fungal cells will be eliminated by innate immune cells, i.e., neutrophils and monocytes. However, recent studies identified a population of fungal cells that can evade the immune response and thereby may disseminate and cause organ dissemination, which is frequently observed during candidemia. In this study, we investigate the so far unresolved mechanism of fungal immune evasion in human whole blood by testing hypotheses with the help of mathematical modeling. We use a previously established state-based virtual infection model for whole-blood infection with C. albicans to quantify the immune response and identified the fungal immune-evasion mechanism. While this process was assumed to be spontaneous in the previous model, we now hypothesize that the immune-evasion process is mediated by host factors and incorporate such a mechanism in the model. In particular, we propose, based on previous studies that the fungal immune-evasion mechanism could possibly arise through modification of the fungal surface by as of yet unknown proteins that are assumed to be secreted by activated neutrophils. To validate or reject any of the immune-evasion mechanisms, we compared the simulation of both immune-evasion models for different infection scenarios, i.e., infection of whole blood with either C. albicans or C. glabrata under non-neutropenic and neutropenic conditions. We found that under non-neutropenic conditions, both immune-evasion models fit the experimental data from whole-blood infection with C. albicans and C. glabrata. However, differences between the immune-evasion models could be observed for the infection outcome under neutropenic conditions with respect to the distribution of fungal cells across the immune cells. Based on these predictions, we suggested specific experimental studies that might allow for the validation or rejection of the proposed immune-evasion mechanism.}, language = {en} } @article{SilwedelHaarmannFehrholzetal.2019, author = {Silwedel, Christine and Haarmann, Axel and Fehrholz, Markus and Claus, Heike and Speer, Christian P. and Glaser, Kirsten}, title = {More than just inflammation: Ureaplasma species induce apoptosis in human brain microvascular endothelial cells}, series = {Journal of Neuroinflammation}, volume = {16}, journal = {Journal of Neuroinflammation}, doi = {10.1186/s12974-019-1413-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200711}, pages = {38}, year = {2019}, abstract = {Background Ureaplasma species (spp.) are commonly regarded as low-virulent commensals but may cause invasive diseases in immunocompromised adults and in neonates, including neonatal meningitis. The interactions of Ureaplasma spp. with host defense mechanisms are poorly understood. This study addressed Ureaplasma-driven cell death, concentrating on apoptosis as well as inflammatory cell death. Methods Human brain microvascular endothelial cells (HBMEC) were exposed to Ureaplasma (U.) urealyticum serovar 8 (Uu8) and U. parvum serovar 3 (Up3). Resulting numbers of dead cells as well as mRNA levels and enzyme activity of key agents in programmed cell death were assessed by flow cytometry, RNA sequencing, and qRT-PCR, respectively. xCELLigence data were used for real-time monitoring of changes in cell adhesion properties. Results Both Ureaplasma isolates induced cell death (p < 0.05, vs. broth). Furthermore, Ureaplasma spp. enhanced mRNA levels for genes in apoptosis, including caspase 3 (Up3 p < 0.05, vs. broth), caspase 7 (p < 0.01), and caspase 9 (Up3 p < 0.01). Caspase 3 activity was increased upon Uu8 exposure (p < 0.01). Vice versa, Ureaplasma isolates downregulated mRNA levels for proteins involved in inflammatory cell death, namely caspase 1 (Uu8 p < 0.01, Up3 p < 0.001), caspase 4 (Uu8 p < 0.05, Up3 p < 0.01), NOD-like receptor pyrin domain-containing 3 (Uu8 p < 0.05), and receptor-interacting protein kinase 3 (p < 0.05). Conclusions By inducing apoptosis in HBMEC as main constituents of the blood-brain barrier, Ureaplasma spp. may provoke barrier breakdown. Simultaneous suppression of inflammatory cell death may additionally attenuate host defense strategies. Ultimate consequence could be invasive and long-term CNS infections by Ureaplasma spp.}, language = {en} } @article{HerzBrehm2019, author = {Herz, Michaela and Brehm, Klaus}, title = {Evidence for densovirus integrations into tapeworm genomes}, series = {Parasites \& Vectors}, volume = {12}, journal = {Parasites \& Vectors}, doi = {10.1186/s13071-019-3820-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202478}, pages = {560}, year = {2019}, abstract = {Background Tapeworms lack a canonical piRNA-pathway, raising the question of how they can silence existing mobile genetic elements (MGE). Investigation towards the underlying mechanisms requires information on tapeworm transposons which is, however, presently scarce. Methods The presence of densovirus-related sequences in tapeworm genomes was studied by bioinformatic approaches. Available RNA-Seq datasets were mapped against the Echinococcus multilocularis genome to calculate expression levels of densovirus-related genes. Transcription of densovirus loci was further analyzed by sequencing and RT-qPCR. Results We herein provide evidence for the presence of densovirus-related elements in a variety of tapeworm genomes. In the high-quality genome of E. multilocularis we identified more than 20 individual densovirus integration loci which contain the information for non-structural and structural virus proteins. The majority of densovirus loci are present as head-to-tail concatemers in isolated repeat containing regions of the genome. In some cases, unique densovirus loci have integrated close to histone gene clusters. We show that some of the densovirus loci of E. multilocularis are actively transcribed, whereas the majority are transcriptionally silent. RT-qPCR data further indicate that densovirus expression mainly occurs in the E. multilocularis stem cell population, which probably forms the germline of this organism. Sequences similar to the non-structural densovirus genes present in E. multilocularis were also identified in the genomes of E. canadensis, E. granulosus, Hydatigera taeniaeformis, Hymenolepis diminuta, Hymenolepis microstoma, Hymenolepis nana, Taenia asiatica, Taenia multiceps, Taenia saginata and Taenia solium. Conclusions Our data indicate that densovirus integration has occurred in many tapeworm species. This is the first report on widespread integration of DNA viruses into cestode genomes. Since only few densovirus integration sites were transcriptionally active in E. multilocularis, our data are relevant for future studies into gene silencing mechanisms in tapeworms. Furthermore, they indicate that densovirus-based vectors might be suitable tools for genetic manipulation of cestodes.}, language = {en} }