@article{LohseBoeserKlotzetal.1987, author = {Lohse, M. J. and B{\"o}ser, S. and Klotz, Karl-Norbert and Schwabe, U.}, title = {Affinities of barbiturates for the GABA-receptor complex and A\(_1\) adenosine receptors: A possible explanation of their excitatory effects}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60250}, year = {1987}, abstract = {The effects of barbiturates on the GABA·receptor complex and the A\(_1\) adenosine receptor were studied. At the GABA-receptor complex the barbiturates inhibited the binding of [\(^{35}\)S]t-butylbicyclophosphorothionate [\(^{35}\)S]TBPT) and enhanced the binding of [\(^3\)H]diazepam. Kinetic and saturation experiments showed that both effects were allosteric. Whereas all barbiturates caused complete inhibition of [\(^{35}\)S]TBPT binding, they showed varying degrees of maximal enhancement of [\(^3\)H]diazepam binding; (±)methohexital was idenafied as the most efficacious compound for this enhancement. At the A\(_1\) adenosine receptor all barbiturates inhibited the binding of [\(^3\)H]N\(^6\)-phenylisopropyladenosine (\(^3\)H]PIA) in a competitive manner. The comparison of the effects on [\(^3\)H]diazepam and [\(^3\)H]PIA binding showed that excitatory barbiturates interact preferentially with the A\(_1\) adenosine receptor, and sedative/anaesthetic barbiturates with the GABA-receptor complex. It is speculated that the interaction with these two receptors might be the basis of the excitatory versus sedative/ anaesthetic properties of barbiturates.}, subject = {Toxikologie}, language = {en} } @article{LohseKlotzLindenbornFotinosetal.1987, author = {Lohse, M. J. and Klotz, Karl-Norbert and Lindenborn Fotinos, J. and Reddington, M. and Schwabe, U. and Olsson, R. A.}, title = {8-Cyclopentyl-1,3-dipropylxanthine (DPCPX) - a selective high affinity antagonist radioligand for A\(_1\) adenosine receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60246}, year = {1987}, abstract = {The properties of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) as an antagonist ligand for A\(_1\) adenosirre receptors were examined and conipared with other radioligands for this receptor. DPCPX competitively antagonized both the inhibition of adenylate cyclase activity via A\(_1\) adenosirre receptors and the stimulationvia A\(_2\) adenosirre receptors. The K\(_i\)-values of this antagonism were 0.45 nM at the A\(_1\) receptor of rat fat cells, and 330 nM at the A\(_2\) receptor of human platelets, giving a more than 700-fold A\(_1\)-selectivity. A similar A\(_1\)-selectivity was determined in radioligand binding studies. Even at high concentrations, DPCPX did not significantly inhibit the soluble cAMPphosphodiesterase activity of human platelets. [\(^3\)H]DPCPX (105 Ci/mmol) bound in a saturable manner with high affinity to A\(_1\) receptors in membranes of bovine brain and heart, and rat brain and fat cells (K\(_D\) -values 50-190 pM). Its nonspecific binding was about 1\% of total at K\(_D\) , except in bovine myocardial membranes (about 10\%). Binding studies with bovine myocardial membranes allowed the analysis of both the high and low agonist affinity states of this receptor in a tissue with low receptor density. The binding properties of [\(^3\)H]DPCPX appear superior to those of other agonist and antagonist radioligands for the A\(_1\) receptor.}, subject = {Toxikologie}, language = {en} } @article{KlotzLohse1986, author = {Klotz, Karl-Norbert and Lohse, M. J.}, title = {The glycoprotein nature of A\(_1\) adenosine receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60231}, year = {1986}, abstract = {A\(_1\) adenosine receptors from different tissues and species we~e photoaffinity labelled and then the carbohydrate content was examined by both enzymatic and chemical treatment. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the labelled membrane receptors shows that neuraminidase treatment alters the electrophoretic mobility of the receptor band indica ting the presence of terminal neurandnie acids. Neuraminidase digestion does not influence the binding characteristics of the receptor. The totally deglycosylated receptor protein obtained by chemical treatment has an apparent molecular weight Of 32,000.}, subject = {Toxikologie}, language = {en} } @article{KlotzLohseSchwabe1986, author = {Klotz, Karl-Norbert and Lohse, M. J. and Schwabe, U.}, title = {Characterization of the solubilized A\(_1\) adenosine receptor from rat brain membranes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60222}, year = {1986}, abstract = {A\(_1\) adenosine receptors from rat brain membranes were solubilized with the zwitterionic detergent 3-[3-( cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized receptors retained all the characteristics of membrane-bound A\(_1\) adenosine receptors. A high and a low agonist affinity state for the radiolabelled agonist (R)-\(N^6\)-[\(^3\)H]phenylisopropyladenosine([\(^3\)H]PJA) with K\(_D\) values of 0.3 and 12 nM, respectively, were detected. High-affinity agonist binding was regulated by guanine nucleotides. In addition agonist binding was still modulated by divalent cations. The solubilized A\(_1\) adenosine receptors could be labelled not only with the agonist [\(^3\)H]PIA but also with the antagonist I ,3-diethyi-8-[\(^3\)H]phenylxanthine. Guanine nucleotides did not affect antagonist binding as reported for membrane-bound receptors. These results suggest that the solubilized receptors are still coupled to the guanine nucleotide binding protein N; and that all regulatory functions are retained on solubilization. Key Words: A1 adenosine receptors - Solubilization- Rat brain membranes. Klotz K.-N. et al. Characterization of the solubilized A1 adenosine receptor from rat brain membranes. J. Neurochem. 46, 1528-1534 (1986).}, subject = {Toxikologie}, language = {en} } @article{KochDegerKlotzetal.1986, author = {Koch, R. and Deger, A. and Klotz, Karl-Norbert and Schenzle, D. and Kr{\"a}mer, H. and Kelm, S. and M{\"u}ller, G. and Rapp, R. and Weber, U.}, title = {Characterization of solubilized insulin receptors from rat liver microsomes. Existence of two receptor species with different binding properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60215}, year = {1986}, abstract = {Insulin receptors were solubilized from rat liver microsomes by the nonionic detergent Triton X-100. After gel filtration of the extract on Sepharose CL-6B, two insulin-binding species (peak I and peak li) were obtained. The structure and binding properties of both peaks were characterized. Gel filtration yielded Stokes radii of 9.2 nm (peak I) and 8.0 nm (peak Il). Both peaks were glycoproteins. At 4°C peak 1 showed optimal insulin binding at pH 8.0 and high ionic strength. In contrast, peak li bad its binding optimum at pH 7.0 and low ionic strength, where peak I bindingwas minimal. For peak I the change in insulin binding under different conditions of pH and ionic strength was due to a change in receptor affinity only. For peak 11 an additional change in receptor number was found. Both peaks yielded non-linear Scatchard plots under most of the buffer conditions examined. At their binding optima at 4 oc the high affinity dissociation constants were 0.50 nM (peak I) and 0.55 nM (peak II). Sodium dodecyl sulfatejpolyacrylamide gel electrophoresis of peak I revealed five receptor bands with Mr 400000, 365000, 320000, 290000, and 245000 under non-reducing conditions. For peak II two major receptor bands with M\(_r\) 210000 and 115000 were found. The peak II receptor bands were also obtained aftermild reduction of peak I. After complete reduction both peaks showed one major receptor band with M\(_r\) 130000. The reductive generation of the peak II receptor together with molecular mass estimations suggest that the peak I receptor is the disulfide-linked dimer of the peak II receptor. Thus, Triton extracts from rat liver microsomes contain two receptor species, which are related, but differ considerably in their size and insulin-binding properties.}, subject = {Toxikologie}, language = {en} } @article{UkenaSchirrenKlotzetal.1985, author = {Ukena, D. and Schirren, C. G. and Klotz, Karl-Norbert and Schwabe, U.}, title = {Evidence for an A\(_2\) adenosine receptor in guinea pig lung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60202}, year = {1985}, abstract = {Adenosine receptors in guinea pig lung were characterized by measurement of cyclic AMP formation and radioligand binding. 5'-N-Ethylcarboxamidoadenosine (NECA) increased cyclic AMP Ievels in lung slices about 4-fold over basal values with an EC\(_{50}\) of 0.32 \(\mu\)mol/l. N\(^6\) - R-(- )-Phenylisopropyladenosine (R-PIA) was 5-fold less potent than NECA. 5'-N-Methylcarboxamidoadenosine (MECA) and 2-chloroadenosine had EC\(_{50}\)-values of 0.29 and 2.6 \(\mu\)mol/l, whereas adenosine and inosine had no effect. The adenosine receptors in guinea pig Iung can therefore be classified as A\(_2\) receptors. Several xanthine derivatives antagonized the NECA-induced increase in cyclic AMP levels. 1,3-Diethyl-8-phenylxanthine (DPX; K\(_i\) 0.14 \(\mu\)mol/l) was the most potent analogue, followed by 8-phenyltheophylline (K\(_i\) 0.55 \(\mu\)mol/l), 3-isobutyl-1-methylxanthine (IBMX; K\(_i\) 2.9 \(\mu\)mol/l) and theophylline (K\(_i\) 8.1 \(\mu\)mol/l). In contrast, enprofylline (1 mmol/1) enhanced basal and NECA-stimulated cyclic AMP formation. In addition, we attempted to characterize these receptors in binding studies with [\(^3\)H]NECA. The K\(_D\) for [\(^3\)H] NECA was 0.25 \(\mu\)mol/l and the maximal number of binding sites was 12 pmol/mg protein. In competition experiments MECA (K\(_i\) 0.14 \(\mu\)mol/l) was the most potent inhibitor of [\(^3\)H] NECA binding, followed by NECA (K\(_i\) 0.19 \(\mu\)mol/l) and 2-chloroadenosine (K\(_i\) 1.4 \(\mu\)mol/l). These results correlate well with the EC\(_{50}\)- values for cyclic AMP formation in lung slices. However, the K\(_i\)-values of R-PIA and theophylline were 240 and 270 \(\mu\)mol/l, and DPX and 8-phenyltheophylline did not compete for [\(^3\)H]NECA binding sites. Therefore, a complete characterization of A\(_2\) adenosine receptors by [\(^3\)H] NECA binding was not achieved. In conclusion, our results show the presence of adenylate cyclase-coupled A\(_2\) adenosiile receptors in lung tissue which are antagonized by several xanthines.}, subject = {Toxikologie}, language = {en} } @article{KlotzCristalliGrifantinietal.1985, author = {Klotz, Karl-Norbert and Cristalli, G. and Grifantini, M. and Vittori, S. and Lohse, M. J.}, title = {Photoaffinity labeling of A\(_1\) adenosine receptors}, series = {The journal of biological chemistry}, volume = {27}, journal = {The journal of biological chemistry}, number = {260}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60198}, year = {1985}, abstract = {The ligand-binding subunit of the A\(_1\)-adenosine receptor has been identified by photoaffinity labeling. A photolabile derivative of R- \(N^6\)-phenylisopropyladenosine, R-2-azido-\(N^6\)-p-hydroxyphenylisopropyladenosine (R-AHPIA), has been synthesized as a covalent specific Iigand for A\(_1\)-adenosine receptors. In adenylate cyclase studies with membranes of rat fat cells and human platelets, R·AHPIA has adenosine receptor agonist activity with a more than 60-fold selectivity for the A\(_1\)-subtype. It competes for [\(^3\)H].\(N^6\)- phenylisopropyladenosine binding to Arreceptors of rat brain membranes with a Ki value of 1.6 nM. After UV irradiation, R-AHPIA binds irreversibly to the receptor, as indicated by a loss of [\(^3\)H)\(N^6\)-phenylisopropyladenosine binding afterextensive washing; the K; value for this photoinactivation is 1.3 nM. The p-hydroxyphenyl substituent of R-AHPIA can be directly radioiodinated to give a photoaffinity Iabel of high specific radioactivity (\(^{125}\)I-AHPIA). This compound has a KD value of about 1.5 nM as assessed from saturation and kinetic experiments. Adenosine analogues compete for \(^{125}\)I-AHPIA binding to rat brain membranes with an order of potency characteristic for A\(_1\)-adenosine receptors. Dissociation curves following UV irradiation at equilibrium demonstrate 30-40\% irreversible specific binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the probe is photoincorporated into a single peptide of M\(_r\) = 35,000. Labeling of this peptide can be blocked specifically and stereoselectively by adenosine receptor agonists and antagonists in a manner which is typical for the A\(_1\)-subtype. The results indicate that \(^{125}\)I-AHPIA identifies the ligand-binding subunit of the A\(_1\)-adenosine receptor, which is a peptide with M\(_r\) = 35,000.}, subject = {Toxikologie}, language = {en} } @article{LohseKlotzJakobsetal.1985, author = {Lohse, M. J. and Klotz, Karl-Norbert and Jakobs, K. H. and Schwabe, U.}, title = {Barbiturates are selective antagonists at A\(_1\) adenosine receptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60187}, year = {1985}, abstract = {Barbiturates in pharmacologically relevant . concentrations inhibit binding of (R)-\(N^6\)-phenylisopropyl[\(^3\)H]adenosine ([\(^3\)H]PIA) to solubilized A\(_1\) adenosine receptors in a concentration-dependent, stereospecific, and competitive manner. K\(_i\) values are similar to those obtained for membrane-bound receptors and are 31 \(\mu\)M for ( ± )-5-(1 ,3-dimethyl)-5-ethylbarbituric acid [( ± )DMBB] and 89 \(\mu\)M for ( ± )-pentobarbital. Kinetic experiments demoostrate that barbiturates compete directly for the binding site of the receptor. The inhibition of rat striatal adenylate cyclase by unlabelled (R)-\(N^6\)-phenylisopropyladenosine [(R)-PIA] is antagonized by barbiturates in the same concentrations that inhibit radioligand binding. The Stimulation of adenylate cyclase via A\(_2\) adenosine receptors in membranes from NIE 115 neuroblastoma cells is antagonized only by 10-30 times higher concentrations of barbiturates. lt is concluded that barbiturates are selective antagonists at the A1 receptor subtype. In analogy to the excitatory effects of methylxanthines it is suggested that A\(_1\) adenosine receptor antagonism may convey excitatory properties to barbiturates. Key Words: Adenosine receptors-Barbiturates - Adenylate cyclase-Receptor solubilization-[3H]PIA binding-N1E 115 cells. Lohse M. J. et al. Barbiturates are selective antagonists at A1 adenosine receptors.}, subject = {Toxikologie}, language = {en} } @article{MarinovichLutz1985, author = {Marinovich, M. and Lutz, Werner K.}, title = {Covalent binding of aflatoxin B\(_1\) to liver DNA in rats pretreated with ethanol}, series = {Experientia}, volume = {41}, journal = {Experientia}, number = {10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55237}, pages = {1338 -- 1340}, year = {1985}, abstract = {Male Fischer F-344 rats were given ethanol in the drinking water and/or by single oral administration. Following this, the animals received p.o. 100 ng/kg of the hepatocarcinogen eHJaflatoxin BI (AFBI)' 24 h later, the level of DNA-bound AFBI was determined in the liver and was found not to be affected by any type of ethanol pretreatment. A cocarcinogenic effect of ethanol in the liver is therefore unlikely to be due to an effect on the metabolic activation and inactivation processes governing the formation of DNA-binding AFBI metabolites.}, subject = {Toxikologie}, language = {en} } @phdthesis{Sieber2009, author = {Sieber, Maximilian}, title = {Evaluation of 1H-NMR and GC/MS-based metabonomics for the assessment of liver and kidney toxicity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-43052}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {For the assessment of metabonomics techniques for the early, non-invasive detection of toxicity, the nephrotoxins gentamicin (s.c. administration of 0, 60 and 120 mg/kg bw 2x daily for 8 days), ochratoxin A (p.o. administration of 0, 21, 70 and 210 µg/kg bw 5 days/week for 90 days) and aristolochic acid (p.o. administration of 0, 0.1, 1.0 and 10 mg/kg bw for 12 days) were administered to rats and urine samples were analyzed with 1H-NMR and GC/MS. Urine samples from the InnoMed PredTox project were analyzed as well, thereby focusing on 1H-NMR analysis and bile duct necrosis as histopathological endpoint. 1H-NMR analysis used water supression with the following protocol: 1 M phosphate buffer, D2O as shift lock reagent, D4-trimethylsilyl­propionic acid as chemical shift reference, noesygppr1d pulse sequence (Bruker). For multivariate data analysis, spectral intensity was binned into 0.04 ppm wide bins. GC/MS analysis of urine was carried out after protein precipitation with methanol, drying, derivatization with methoxyamine hydrochloride in pyridine and with methyl(trimethylsilyl)­trifluoroacetamide on a DB5-MS column using EI ionization. The chromatograms were prepared for multivariate data analysis using the R-program based peak picking and alignment software XCMS version 2.4.0. Principal component analysis (PCA) to detect and visualize time-point and dose-dependent differences between treated animals and controls and orthogonal projection to latent structures discriminant analysis (OPLS-DA) for identification of potential molecular markers of toxicity was carried out using SIMCA P+ 11.5 1H-NMR-based markers were identified and quantified with the Chenomx NMR Suite, GC/MS based markers were identified using the NIST Mass Spectral Database and by co-elution with authentic reference standards. PCA of urinary metabolite profiles was able to differentiate treated animals from controls at the same time as histopathology. An advantage over classical clinical chemistry parameters regarding sensitivity could be observed in some cases. Metabonomic analysis with GC/MS and 1H-NMR revealed alterations in the urinary profile of treated animals 1 day after start of treatment with gentamicin, correlating with changes in clinical chemistry parameters and histopathology. Decreased urinary excretion of citrate, 2-oxoglutarate, hippurate, trigonelline and 3-indoxylsulfate increased excretion of 5-oxoproline, lactate, alanine and glucose were observed. Ochratoxin A treatment caused decreased excretion of citrate, 2-oxoglutarate and hippurate and and increased excretion of glucose, myo-inositol, N,N-dimethylglycine, glycine, alanine and lactate as early as 2 weeks after start of treatment with 210µg OTA/kg bw, correlating with changes in clinical chemistry parameters and histopathology. Integration of histopathology scores increased confidence in the molecular markers discovered. Aristolochic acid treatment resulted in decreased urinary excretion of citrate, 2-oxoglutarate, hippurate and creatinine as well as increased excretion of 5-oxoproline, N,N-dimethylglycine, pseudouridine and uric acid. No alterations in clinical chemistry parameters or histopathology were noted.Decreased excretion of hippurate indicates alterations in the gut microflora, an effect that is expected as pharmacological action of the aminoglycoside antibiotic gentamicin and that can also be explained by the p.o. administration of xenobiotica. Decreased Krebs cycle intermediates (citrate and 2-oxoglutarate) and increased lactate is associated with altered energy metabolism. Increased pseudouridine excretion is associated with cell proliferation and was observed with aristolochic acid and ochratoxin A, for which proliferative processes were observed with histopathology. 5-oxoproline and N,N-dimethylglycine can be associated with oxidative stress. Glucose, a marker of renal damage in clinical chemistry, was observed for all three nephrotoxins studied. Single study analysis with PCA of GC/MS chromatograms and 1H-NMR spectra of urine from 3 studies conducted within the InnoMed PredTox project showing bile duct necrosis revealed alterations in urinary profiles with the onset of changes in clinical chemistry and histopathology. Alterations were mainly decreased Krebs cycle intermediates and changes in the aromatic gut flora metabolites, an effect that may result as a secondary effect from altered bile flow. In conclusion, metabonomics techniques are able to detect toxic lesions at the same time as histopathology and clinical chemistry. The metabolites found to be altered are common to most toxicities and are not organ-specific. A mechanistic link to the observed toxicity has to be established in order to avoid confounders such as body weight loss, pharmacological effects etc. For pattern recognition purposes, large databases are necessary.}, subject = {Toxikologie}, language = {en} }