@article{ZiebellRodriguesForsteretal.2023, author = {Ziebell, Philipp and Rodrigues, Johannes and Forster, Andr{\´e} and Sanguinetti, Joseph L. and Allen, John JB. and Hewig, Johannes}, title = {Inhibition of midfrontal theta with transcranial ultrasound explains greater approach versus withdrawal behavior in humans}, series = {Brain Stimulation}, volume = {16}, journal = {Brain Stimulation}, number = {5}, doi = {10.1016/j.brs.2023.08.011}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349890}, pages = {1278-1288}, year = {2023}, abstract = {Highlights • Transcranial ultrasound neuromodulation/stimulation (TUS) is a growing field. • We conducted a double-blind sham-controlled within-subjects large sample TUS study. • Right prefrontal cortex TUS inhibits midfrontal theta electroencephalography (MFT). • TUS MFT inhibition explains greater approach versus withdrawal in a virtual T-maze. • This distinct TUS-MFT-behavior link merits future basic and applied research. Abstract Recent reviews highlighted low-intensity transcranial focused ultrasound (TUS) as a promising new tool for non-invasive neuromodulation in basic and applied sciences. Our preregistered double-blind within-subjects study (N = 152) utilized TUS targeting the right prefrontal cortex, which, in earlier work, was found to positively enhance self-reported global mood, decrease negative states of self-reported emotional conflict (anxiety/worrying), and modulate related midfrontal functional magnetic resonance imaging activity in affect regulation brain networks. To further explore TUS effects on objective physiological and behavioral variables, we used a virtual T-maze task that has been established in prior studies to measure motivational conflicts regarding whether participants execute approach versus withdrawal behavior (with free-choice responses via continuous joystick movements) while allowing to record related electroencephalographic data such as midfrontal theta activity (MFT). MFT, a reliable marker of conflict representation on a neuronal level, was of particular interest to us since it has repeatedly been shown to explain related behavior, with relatively low MFT typically preceding approach-like risky behavior and relatively high MFT typically preceding withdrawal-like risk aversion. Our central hypothesis is that TUS decreases MFT in T-maze conflict situations and thereby increases approach and reduces withdrawal. Results indicate that TUS led to significant MFT decreases, which significantly explained increases in approach behavior and decreases in withdrawal behavior. This study expands TUS evidence on a physiological and behavioral level with a large sample size of human subjects, suggesting the promise of further research based on this distinct TUS-MFT-behavior link to influence conflict monitoring and its behavioral consequences. Ultimately, this can serve as a foundation for future clinical work to establish TUS interventions for emotional and motivational mental health.}, language = {en} } @article{PfisterSchwarzHolzmannetal.2023, author = {Pfister, Roland and Schwarz, Katharina A. and Holzmann, Patricia and Reis, Moritz and Yogeeswaran, Kumar and Kunde, Wilfried}, title = {Headlines win elections: mere exposure to fictitious news media alters voting behavior}, series = {PloS One}, volume = {18}, journal = {PloS One}, number = {8}, doi = {10.1371/journal.pone.0289341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349845}, year = {2023}, abstract = {Repeatedly encountering a stimulus biases the observer's affective response and evaluation of the stimuli. Here we provide evidence for a causal link between mere exposure to fictitious news reports and subsequent voting behavior. In four pre-registered online experiments, participants browsed through newspaper webpages and were tacitly exposed to names of fictitious politicians. Exposure predicted voting behavior in a subsequent mock election, with a consistent preference for frequent over infrequent names, except when news items were decidedly negative. Follow-up analyses indicated that mere media presence fuels implicit personality theories regarding a candidate's vigor in political contexts. News outlets should therefore be mindful to cover political candidates as evenly as possible.}, language = {en} } @article{KrauseHerbort2023, author = {Krause, Lisa-Marie and Herbort, Oliver}, title = {Just visual context or part of the gesture? The role of arm orientation in bent pointing interpretation}, series = {Acta Psychologica}, volume = {241}, journal = {Acta Psychologica}, doi = {10.1016/j.actpsy.2023.104062}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349839}, year = {2023}, abstract = {Pointing gestures can take on different shapes. For example, people often point with a bent wrist at a referent that is occluded by another object. We hypothesized that while the extrapolation of the index finger is the most important visual cue in such bent pointing gestures, arm orientation is affecting interpretations as well. We tested two competing hypotheses. First, the arm could be processed as a less reliable but additional direction cue also indicating the referent. Consequently, the index finger extrapolation would be biased towards the arm direction (assimilation effect). Second, the arm could be perceived as visual context of the index finger, leading to an interpretation that is repulsed from the arm direction (contrast effect). To differentiate between both, we conducted two experiments in which arm and finger orientation of a virtual pointer were independently manipulated. Participants were asked to determine the pointed-at location. As expected, participants based their interpretations on the extrapolation of the index finger. In line with the second hypothesis, the more the arm was oriented upwards, the lower the point was interpreted and vice versa. Thus, interpretation pattern indicated a contrast effect. Unexpectedly, gestures with aligned arm and index finger deviated from the general contrast effect and were interpreted linearly compared to bent gestures. In sum, the experiments show that interpretations of bent pointing gestures are not only based on the direction of the index finger but also depend on the arm orientation and its relationship to the index finger orientation.}, language = {en} } @article{WehrheimFaskowitzSpornsetal.2023, author = {Wehrheim, Maren H. and Faskowitz, Joshua and Sporns, Olaf and Fiebach, Christian J. and Kaschube, Matthias and Hilger, Kirsten}, title = {Few temporally distributed brain connectivity states predict human cognitive abilities}, series = {NeuroImage}, volume = {277}, journal = {NeuroImage}, doi = {10.1016/j.neuroimage.2023.120246}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349874}, year = {2023}, abstract = {Highlights • Brain connectivity states identified by cofluctuation strength. • CMEP as new method to robustly predict human traits from brain imaging data. • Network-identifying connectivity 'events' are not predictive of cognitive ability. • Sixteen temporally independent fMRI time frames allow for significant prediction. • Neuroimaging-based assessment of cognitive ability requires sufficient scan lengths. Abstract Human functional brain connectivity can be temporally decomposed into states of high and low cofluctuation, defined as coactivation of brain regions over time. Rare states of particularly high cofluctuation have been shown to reflect fundamentals of intrinsic functional network architecture and to be highly subject-specific. However, it is unclear whether such network-defining states also contribute to individual variations in cognitive abilities - which strongly rely on the interactions among distributed brain regions. By introducing CMEP, a new eigenvector-based prediction framework, we show that as few as 16 temporally separated time frames (< 1.5\% of 10 min resting-state fMRI) can significantly predict individual differences in intelligence (N = 263, p < .001). Against previous expectations, individual's network-defining time frames of particularly high cofluctuation do not predict intelligence. Multiple functional brain networks contribute to the prediction, and all results replicate in an independent sample (N = 831). Our results suggest that although fundamentals of person-specific functional connectomes can be derived from few time frames of highest connectivity, temporally distributed information is necessary to extract information about cognitive abilities. This information is not restricted to specific connectivity states, like network-defining high-cofluctuation states, but rather reflected across the entire length of the brain connectivity time series.}, language = {en} } @article{ZilligPauliWieseretal.2023, author = {Zillig, Anna-Lena and Pauli, Paul and Wieser, Matthias and Reicherts, Philipp}, title = {Better safe than sorry? - On the influence of learned safety on pain perception}, series = {PloS One}, volume = {18}, journal = {PloS One}, number = {11}, doi = {10.1371/journal.pone.0289047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349905}, year = {2023}, abstract = {The experience of threat was found to result—mostly—in increased pain, however it is still unclear whether the exact opposite, namely the feeling of safety may lead to a reduction of pain. To test this hypothesis, we conducted two between-subject experiments (N = 94; N = 87), investigating whether learned safety relative to a neutral control condition can reduce pain, while threat should lead to increased pain compared to a neutral condition. Therefore, participants first underwent either threat or safety conditioning, before entering an identical test phase, where the previously conditioned threat or safety cue and a newly introduced visual cue were presented simultaneously with heat pain stimuli. Methodological changes were performed in experiment 2 to prevent safety extinction and to facilitate conditioning in the first place: We included additional verbal instructions, increased the maximum length of the ISI and raised CS-US contingency in the threat group from 50\% to 75\%. In addition to pain ratings and ratings of the visual cues (threat, safety, arousal, valence, and contingency), in both experiments, we collected heart rate and skin conductance. Analysis of the cue ratings during acquisition indicate successful threat and safety induction, however results of the test phase, when also heat pain was administered, demonstrate rapid safety extinction in both experiments. Results suggest rather small modulation of subjective and physiological pain responses following threat or safety cues relative to the neutral condition. However, exploratory analysis revealed reduced pain ratings in later trials of the experiment in the safety group compared to the threat group in both studies, suggesting different temporal dynamics for threat and safety learning and extinction, respectively. Perspective: The present results demonstrate the challenge to maintain safety in the presence of acute pain and suggest more research on the interaction of affective learning mechanism and pain processing.}, language = {en} } @article{GutzeitWellerMuthetal.2024, author = {Gutzeit, Julian and Weller, Lisa and Muth, Felicitas and K{\"u}rten, Jens and Huestegge, Lynn}, title = {Eye did this! Sense of agency in eye movements}, series = {Acta Psychologica}, volume = {243}, journal = {Acta Psychologica}, doi = {10.1016/j.actpsy.2023.104121}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349819}, year = {2024}, abstract = {This study investigates the sense of agency (SoA) for saccades with implicit and explicit agency measures. In two eye tracking experiments, participants moved their eyes towards on-screen stimuli that subsequently changed color. Participants then either reproduced the temporal interval between saccade and color-change (Experiment 1) or reported the time points of these events with an auditory Libet clock (Experiment 2) to measure temporal binding effects as implicit indices of SoA. Participants were either made to believe to exert control over the color change or not (agency manipulation). Explicit ratings indicated that the manipulation of causal beliefs and hence agency was successful. However, temporal binding was only evident for caused effects, and only when a sufficiently sensitive procedure was used (auditory Libet clock). This suggests a feebler connection between temporal binding and SoA than previously proposed. The results also provide evidence for a relatively fast acquisition of sense of agency for previously never experienced types of action-effect associations. This indicates that the underlying processes of action control may be rooted in more intricate and adaptable cognitive models than previously thought. Oculomotor SoA as addressed in the present study presumably represents an important cognitive foundation of gaze-based social interaction (social sense of agency) or gaze-based human-machine interaction scenarios. Public significance statement: In this study, sense of agency for eye movements in the non-social domain is investigated in detail, using both explicit and implicit measures. Therefore, it offers novel and specific insights into comprehending sense of agency concerning effects induced by eye movements, as well as broader insights into agency pertaining to entirely newly acquired types of action-effect associations. Oculomotor sense of agency presumably represents an important cognitive foundation of gaze-based social interaction (social agency) or gaze-based human-machine interaction scenarios. Due to peculiarities of the oculomotor domain such as the varying degree of volitional control, eye movements could provide new information regarding more general theories of sense of agency in future research.}, language = {en} } @article{StrobachKuertenHuestegge2023, author = {Strobach, Tilo and K{\"u}rten, Jens and Huestegge, Lynn}, title = {Benefits of repeated alternations - task-specific vs. task-general sequential adjustments of dual-task order control}, series = {Acta Psychologica}, volume = {236}, journal = {Acta Psychologica}, doi = {10.1016/j.actpsy.2023.103921}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349868}, year = {2023}, abstract = {An important cognitive requirement in multitasking is the decision of how multiple tasks should be temporally scheduled (task order control). Specifically, task order switches (vs. repetitions) yield performance costs (i.e., task-order switch costs), suggesting that task order scheduling is a vital part of configuring a task set. Recently, it has been shown that this process takes specific task-related characteristics into account: task order switches were easier when switching to a preferred (vs. non-preferred) task order. Here, we ask whether another determinant of task order control, namely the phenomenon that a task order switch in a previous trial facilitates a task order switch in a current trial (i.e., a sequential modulation of task order switch effect) also takes task-specific characteristics into account. Based on three experiments involving task order switches between a preferred (dominant oculomotor task prior to non-dominant manual/pedal task) and a non-preferred (vice versa) order, we replicated the finding that task order switching (in Trial N) is facilitated after a previous switch (vs. repetition in Trial N - 1) in task order. There was no substantial evidence in favor of a significant difference when switching to the preferred vs. non-preferred order and in the analyses of the dominant oculomotor task and the non-dominant manual task. This indicates different mechanisms underlying the control of immediate task order configuration (indexed by task order switch costs) and the sequential modulation of these costs based on the task order transition type in the previous trial.}, language = {en} } @article{BellingerWehrmannRohdeetal.2023, author = {Bellinger, Daniel and Wehrmann, Kristin and Rohde, Anna and Schuppert, Maria and St{\"o}rk, Stefan and Flohr-Jost, Michael and Gall, Dominik and Pauli, Paul and Deckert, J{\"u}rgen and Herrmann, Martin J. and Erhardt-Lehmann, Angelika}, title = {The application of virtual reality exposure versus relaxation training in music performance anxiety: a randomized controlled study}, series = {BMC Psychiatry}, volume = {23}, journal = {BMC Psychiatry}, doi = {10.1186/s12888-023-05040-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357833}, year = {2023}, abstract = {Background Performance anxiety is the most frequently reported anxiety disorder among professional musicians. Typical symptoms are - on a physical level - the consequences of an increase in sympathetic tone with cardiac stress, such as acceleration of heartbeat, increase in blood pressure, increased respiratory rate and tremor up to nausea or flush reactions. These symptoms can cause emotional distress, a reduced musical and artistical performance up to an impaired functioning. While anxiety disorders are preferably treated using cognitive-behavioral therapy with exposure, this approach is rather difficult for treating music performance anxiety since the presence of a public or professional jury is required and not easily available. The use of virtual reality (VR) could therefore display an alternative. So far, no therapy studies on music performance anxiety applying virtual reality exposure therapy have investigated the therapy outcome including cardiovascular changes as outcome parameters. Methods This mono-center, prospective, randomized and controlled clinical trial has a pre-post design with a follow-up period of 6 months. 46 professional and semi-professional musicians will be recruited and allocated randomly to an VR exposure group or a control group receiving progressive muscle relaxation training. Both groups will be treated over 4 single sessions. Music performance anxiety will be diagnosed based on a clinical interview using ICD-10 and DSM-5 criteria for specific phobia or social anxiety. A behavioral assessment test is conducted three times (pre, post, follow-up) in VR through an audition in a concert hall. Primary outcomes are the changes in music performance anxiety measured by the German B{\"u}hnenangstfragebogen and the cardiovascular reactivity reflected by heart rate variability (HRV). Secondary outcomes are changes in blood pressure, stress parameters such as cortisol in the blood and saliva, neuropeptides, and DNA-methylation. Discussion The trial investigates the effect of VR exposure in musicians with performance anxiety compared to a relaxation technique on anxiety symptoms and corresponding cardiovascular parameters. We expect a reduction of anxiety but also a consecutive improvement of HRV with cardiovascular protective effects. Trial registration This study was registered on clinicaltrials.gov. (ClinicalTrials.gov Number: NCT05735860)}, language = {en} } @phdthesis{Pollerhoff2024, author = {Pollerhoff, Lena Katharina}, title = {Age differences in prosociality across the adult lifespan: Insights from self-reports, experimental paradigms, and meta-analyses}, doi = {10.25972/OPUS-35944}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359445}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Human prosociality, encompassing generosity, cooperation, and volunteering, holds a vital role in our daily lives. Over the last decades, the question of whether prosociality undergoes changes over the adult lifespan has gained increased research attention. Earlier studies suggested increased prosociality in older compared to younger individuals. However, recent meta-analyses revealed that this age effect might be heterogeneous and modest. Moreover, the contributing factors and mechanisms behind these age-related variations remain to be identified. To unravel age-related differences in prosociality, the first study of this dissertation employed a meta-analytical approach to summarize existing findings and provide insight into their heterogeneity by exploring linear and quadratic age effects on self-reported and behavioral prosociality. Additionally, two empirical research studies investigated whether these age-related differences in prosociality were observed in real life, assessed through ecological momentary assessment (Study 2), and in a controlled laboratory setting by applying a modified dictator game (Study 3). Throughout these three studies, potential underlying behavioral and computational mechanisms were explored. The outcome of the meta-analysis (Study 1) revealed small linear age effects on prosociality and significant age group differences between younger and older adults, with higher levels of prosociality in older adults. Explorative evidence emerged in favor of a quadratic age effect on behavioral prosociality, indicating the highest levels in midlife. Additionally, heightened prosocial behavior among middle-aged adults was observed compared to younger adults, whereas no significant differences in prosocial behavior were noted between middle-aged and older adults. Situational and contextual features, such as the setting of the study and specific paradigm characteristics, moderated the age-prosociality relationship, highlighting the importance of the (social) context when studying prosociality. For Study 2, no significant age effect on real-life prosocial behavior was observed. However, evidence for a significant linear and quadratic age effect on experiencing empathy in real life emerged, indicating a midlife peak. Additionally, across all age groups, the link between an opportunity to empathize and age significantly predicted real-life prosocial behavior. This effect, indicating higher levels of prosocial behavior when there was a situation possibly evoking empathy, was most pronounced in midlife. Study 3 presented age differences in how older and younger adults integrate values related to monetary gains for self and others to make a potential prosocial decision. Younger individuals effectively combined both values in a multiplicative fashion, enhancing decision-making efficiency. Older adults showed an additive effect of values for self and other and displayed increased decision-making efficiency when considering the values separately. However, among older adults, individuals with better inhibitory control were better able to integrate information about both values in their decisions. Taken together, the findings of this dissertation offer new insights into the multi-faceted nature of prosociality across adulthood and the mechanisms that help explain these age-related disparities. While this dissertation observed increasing prosociality across the adult lifespan, it also questions the assumption that older adults are inherently more prosocial. The studies highlight midlife as a potential peak period in social development but also emphasize the importance of the (social) context and that different operationalizations might capture distinct facets of prosociality. This underpins the need for a comprehensive framework to understand age effects of prosociality better and guide potential interventions.}, subject = {Altersunterschied}, language = {en} } @phdthesis{Chen2024, author = {Chen, Xinyu}, title = {How natural walking changes occipital alpha oscillations and concurrently modulates cognitive processes}, doi = {10.25972/OPUS-35295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352958}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Humans actively interact with the world through a wide range of body movements. To understand human cognition in its natural state, we need to incorporate ecologically relevant body movement into our account. One fundamental body movement during daily life is natural walking. Despite its ubiquity, the impact of natural walking on brain activity and cognition has remained a realm underexplored. In electrophysiology, previous studies have shown a robust reduction of ongoing alpha power in the parieto-occipital cortex during body movements. However, what causes the reduction of ongoing alpha, namely whether this is due to body movement or prevalent sensory input changes, was unknown. To clarify this, study 1 was performed to test if the alpha reduction is dependent on visual input. I compared the resting state alpha power during natural walking and standing, in both light and darkness. The results showed that natural walking led to decreased alpha activity over the occipital cortex compared to standing, regardless of the lighting condition. This suggests that the movement-induced modulation of occipital alpha activity is not driven by visual input changes during walking. I argue that the observed alpha power reduction reflects a change in the state of the subject based on disinhibition induced by walking. Accordingly, natural walking might enhance visual processing and other cognitive processes that involve occipital cortical activity. I first tested this hypothesis in vision. Study 2 was performed to examine the possible effects of natural walking across visual processing stages by assessing various neural markers during different movement states. The findings revealed an amplified early visual response, while a later visual response remain unaffected. A follow-up study 3 replicated the walking-induced enhancement of the early visual evoked potential and showed that the enhancement was dependent on specific stimulus-related parameters (eccentricity, laterality, distractor presence). Importantly, the results provided evidence that the enhanced early visual responses are indeed linked to the modulation of ongoing occipital alpha power. Walking also modulated the stimulus-induced alpha power. Specifically, it showed that when the target appeared in the fovea area without a distractor, walking exhibited a significantly reduced modulation of alpha power, and showed the largest difference to standing condition. This effect of eccentricity indicates that during later visual processing stages, the visual input in the fovea area is less processed than in peripheral areas while walking. The two visual studies showed that walking leads to an enhancement in temporally early visual processes which can be predicted by the walking-induced change in ongoing alpha oscillation likely marking disinhibition. However, while walking affects neural markers of early sensory processes, it does not necessarily lead to a change in the behavioural outcome of a sensory task. The two visual studies suggested that the behavioural outcome seems to be mainly based on later processing stages. To test the effects of walking outside the visual domain, I turned to audition in study 4. I investigated the influence of walking in a particular path vs. simply stepping on auditory processing. Specifically, the study tested whether enhanced processing due to natural walking can be found in primary auditory brain activity and whether the processing preferences are dependent on the walking path. In addition, I tested whether the changed spatial processing that was reported in previous visual studies can be seen in the auditory domain. The results showed enhanced sensory processing due to walking in the auditory domain, which was again linked to the modulation of occipital alpha oscillation. The auditory processing was further dependent on the walking path. Additionally, enhanced peripheral sensory processing, as found in vision, was also present in audition. The findings outside vision supported the idea of natural walking affecting cognition in a rather general way. Therefore in my study 5, I examined the effect of natural walking on higher cognitive processing, namely divergent thinking, and its correlation with the modulation of ongoing alpha oscillation. I analyzed alpha oscillations and behavioural performance during restricted and unrestricted movement conditions while subjects completed a Guilford's alternate uses test. The results showed that natural walking, as well as missing body restriction, reduces the occipital alpha ongoing power independent of the task phase which goes along with higher test scores. The occipital alpha power reduction can therefore be an indicator of a changed state that allows improved higher cognitive processes. In summary, the research presented in this thesis highlights that natural walking can change different processes in the visual and auditory domain as well as higher cognitive processes. The effect can be attributed to the movement of natural walking itself rather than to changes in sensory input during walking. The results further indicate that the walking-induced modulation of ongoing occipital alpha oscillations drives the cognitive effects. We therefore suggest that walking changes the inhibitory state which can influence awareness and attention. Such a mechanism could facilitate an adaptive enhancement in cognitive processes and thereby optimize movement-related behaviour such as navigation.}, subject = {Walking}, language = {en} }